

COMh-sdIL (E2)

Rev 1.0

This page has been intentionally left blank

// 2 www.kontron.com

Disclaimer

Kontron would like to point out that the information contained in this user guide may be subject to alteration, particularly as a result of the constant upgrading of Kontron products. This document does not entail any guarantee on the part of Kontron with respect to technical processes described in the user guide or any product characteristics set out in the user guide. Kontron assumes no responsibility or liability for the use of the described product(s), conveys no license or title under any patent, copyright or mask work rights to these products and makes no representations or warranties that these products are free from patent, copyright or mask work right infringement unless otherwise specified. Applications that are described in this user guide are for illustration purposes only. Kontron makes no representation or warranty that such application will be suitable for the specified use without further testing or modification. Kontron expressly informs the user that this user guide only contains a general description of processes and instructions which may not be applicable in every individual case. In cases of doubt, please contact Kontron.

This user guide is protected by copyright. All rights are reserved by Kontron. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the express written permission of Kontron. Kontron points out that the information contained in this user guide is constantly being updated in line with the technical alterations and improvements made by Kontron to the products and thus this user guide only reflects the technical status of the products by Kontron at the time of publishing.

Brand and product names are trademarks or registered trademarks of their respective owners.

©2024 by Kontron Europe GmbH

Kontron Europe GmbH Gutenbergstraße 2 85737 Ismaning Germany www.kontron.com

// 3 www.kontron.com

Intended Use

This device and associated software are not designed, manufactured or intended for use or resale for the operation of nuclear facilities, the navigation, control or communication systems for aircraft or other transportation, air traffic control, life support or life sustaining applications, weapons systems, or any other application in a hazardous environment, or requiring fail-safe performance, or in which the failure of products could lead directly to death, personal injury, or severe physical or environmental damage (collectively, "high risk applications").

You understand and agree that your use of Kontron devices as a component in High Risk Applications is entirely at your risk. To minimize the risks associated with your products and applications, you should provide adequate design and operating safeguards. You are solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning your products. You are responsible to ensure that your systems (and any Kontron hardware or software components incorporated in your systems) meet all applicable requirements. Unless otherwise stated in the product documentation, the Kontron device is not provided with error-tolerance capabilities and cannot therefore be deemed as being engineered, manufactured or setup to be compliant for implementation or for resale as device in High Risk Applications. All application and safety related information in this document (including application descriptions, suggested safety measures, suggested Kontron products, and other materials) is provided for reference only.

NOTICE

You find the most recent version of the "General Safety Instructions" online in the download area of this product.

NOTICE

This product is not intended for use or suited for storage or operation in corrosive environments, in particular under exposure to sulfur and chlorine and their compounds. For information on how to harden electronics and mechanics against these stress conditions, contact Kontron Support.

// 4 www.kontron.com

Revision History

Revision	Brief Description of Changes	Date of Issue	Author	
1.0	Release	22.11.2024	IH	

Terms and Conditions

Kontron warrants products in accordance with defined regional warranty periods. For more information about warranty compliance and conformity, and the warranty period in your region, visit www.kontron.com/terms-and-conditions.

Kontron sells products worldwide and declares regional General Terms & Conditions of Sale, and Purchase Order Terms & Conditions. Visit www.kontron.com/terms-and-conditions.

For contact information, refer to the corporate offices contact information on the last page of this user guide or visit our website <u>CONTACT US</u>.

Customer Support

Find Kontron contacts by visiting www.kontron.com/support-and-services.

Customer Service

As a trusted technology innovator and global solutions provider, Kontron extends its embedded market strengths into a services portfolio allowing companies to break the barriers of traditional product lifecycles. Proven product expertise coupled with collaborative and highly-experienced support enables Kontron to provide exceptional peace of mind to build and maintain successful products.

For more details on Kontron's service offerings such as: enhanced repair services, extended warranty, Kontron training academy, and more visit www.kontron.com/support-and-services.

Customer Comments

If you have any difficulties using this user guide, discover an error, or just want to provide some feedback, contact <u>Kontron support</u>. Detail any errors you find. We will correct the errors or problems as soon as possible and post the revised user guide on our website.

// 5 www.kontron.com

Symbols

The following symbols may be used in this user guide

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

NOTICE

NOTICE indicates a property damage message.

CAUTION indicates a hazardous situation which, if not avoided, may result in minor or moderate injury

ATTENTION indique une situation dangereuse qui, si elle n'est pas évitée, peut entraîner des blessures mineures ou modérées.

Electric Shock!

This symbol and title warn of hazards due to electrical shocks (> 60 V) when touching products or parts of products. Failure to observe the precautions indicated and/or prescribed by the law may endanger your life/health and/or result in damage to your material.

ESD Sensitive Device!

This symbol and title inform that the electronic boards and their components are sensitive to static electricity. Care must therefore be taken during all handling operations and inspections of this product in order to ensure product integrity at all times.

Caution: HOT Surface!

Do NOT touch! Allow to cool before servicing.

Attention: Surface CHAUDE!

Ne pas toucher! Laissez refroidir avant de procéder à l'entretien.

Caution: Laser!

This symbol inform of the risk of exposure to laser beam and light emitting devices (LEDs) from an electrical device. Eye protection per manufacturer notice shall review before servicing.

This symbol indicates general information about the product and the user guide.

This symbol also indicates detail information about the specific product configuration.

This symbol precedes helpful hints and tips for daily use.

For Your Safety

Your new Kontron product was developed and tested carefully to provide all features necessary to ensure its compliance with electrical safety requirements. It was also designed for a long fault-free life. However, the life expectancy of your product can be drastically reduced by improper treatment during unpacking and installation. Therefore, in the interest of your own safety and of the correct operation of your new Kontron product, you are requested to conform with the following guidelines.

High Voltage Safety Instructions

As a precaution and in case of danger, the power connector must be easily accessible. The power connector is the product's main disconnect device.

ACAUTION

Warning

All operations on this product must be carried out by sufficiently skilled personnel only.

ACAUTION

Electric Shock!

Before installing a non hot-swappable Kontron product into a system always ensure that your mains power is switched off. This also applies to the installation of piggybacks. Serious electrical shock hazards can exist during all installation, repair, and maintenance operations on this product. Therefore, always unplug the power cable and any other cables which provide external voltages before performing any work on this product.

Earth ground connection to vehicle's chassis or a central grounding point shall remain connected. The earth ground cable shall be the last cable to be disconnected or the first cable to be connected when performing installation or removal procedures on this product.

Special Handling and Unpacking Instruction

NOTICE

ESD Sensitive Device!

Electronic boards and their components are sensitive to static electricity. Therefore, care must be taken during all handling operations and inspections of this product, in order to ensure product integrity at all times.

ACAUTION

Handling and operation of the product is permitted only for trained personnel within a work place that is access controlled. Follow the "General Safety Instructions" supplied with the product.

Do not handle this product out of its protective enclosure while it is not used for operational purposes unless it is otherwise protected.

Whenever possible, unpack or pack this product only at EOS/ESD safe work stations. Where a safe work station is not guaranteed, it is important for the user to be electrically discharged before touching the product with his/her hands or tools. This is most easily done by touching a metal part of your system housing.

It is particularly important to observe standard anti-static precautions when changing piggybacks, ROM devices, jumper settings etc. If the product contains batteries for RTC or memory backup, ensure that the product is not placed on conductive surfaces, including anti-static plastics or sponges. They can cause short circuits and damage the batteries or conductive circuits on the product.

Lithium Battery Precautions

If your product is equipped with a lithium battery, take the following precautions when replacing the lithium battery.

// 7 www.kontron.com

Risk of Explosion if the lithium Battery is replaced by an incorrect Type. Dispose of used lithium batteries According to the instructions.

Risque d'explosion si la pile au lithium est remplacée par une pile de type incorrect. Éliminez les piles au lithium usagées conformément aux instructions.

General Instructions on Usage

In order to maintain Kontron's product warranty, this product must not be altered or modified in any way. Changes or modifications to the product, that are not explicitly approved by Kontron and described in this user guide or received from Kontron Support as a special handling instruction, will void your warranty.

This product should only be installed in or connected to systems that fulfill all necessary technical and specific environmental requirements. This also applies to the operational temperature range of the specific board version that must not be exceeded. If batteries are present, their temperature restrictions must be taken into account.

In performing all necessary installation and application operations, only follow the instructions supplied by the present user guide.

Keep all the original packaging material for future storage or warranty shipments. If it is necessary to store or ship the product then re-pack it in the same manner as it was delivered.

Special care is necessary when handling or unpacking the product. See Special Handling and Unpacking Instruction.

Quality and Environmental Management

Kontron aims to deliver reliable high-end products designed and built for quality, and aims to complying with environmental laws, regulations, and other environmentally oriented requirements. For more information regarding Kontron's quality and environmental responsibilities, visit www.kontron.com/about-kontron/corporate-responsibility/quality-management.

Disposal and Recycling

Kontron's products are manufactured to satisfy environmental protection requirements where possible. Many of the components used are capable of being recycled. Final disposal of this product after its service life must be accomplished in accordance with applicable country, state, or local laws or regulations.

WEEE Compliance

The Waste Electrical and Electronic Equipment (WEEE) Directive aims to:

- > Reduce waste arising from electrical and electronic equipment (EEE)
- Make producers of EEE responsible for the environmental impact of their products, especially when the product become waste
- Encourage separate collection and subsequent treatment, reuse, recovery, recycling and sound environmental disposal of EEE
- > Improve the environmental performance of all those involved during the lifecycle of EEE

Environmental protection is a high priority with Kontron. Kontron follows the WEEE directive

You are encouraged to return our products for proper disposal.

// 8 www.kontron.com

Table of Contents

	ision History	
	ms and Conditions	
	tomer Support	
	tomer Service	
Cus	tomer Comments	5
•	nbols	
For	Your Safety	
	High Voltage Safety Instructions	
	Special Handling and Unpacking Instruction	
	Lithium Battery Precautions	
	neral Instructions on Usage	
Qua	ality and Environmental Management	
	Disposal and Recycling	
	WEEE Compliance	
	le of Contents	
	of Tables	
	of Figures	
1/	General Safety Instructions	
	1.1. Electrostatic Discharge (ESD)	
	1.2. Grounding Methods	
	1.3. Instructions for Lithium Battery	
2/	Product Introduction	
	2.1. Product Naming Clarification	
	2.2. Product Description	
	2.3. COM-HPC® Documentation	
	2.4. COM-HPC® Server Functionality	
_ ,	2.5. COM-HPC® Benefits	
3/	Product Specification	
	3.1. Module Variants	
	3.1.1. Industrial Temperature Grade Modules (E2, -40°C to +85°C)	
	3.2. Accessories	
	3.2.1. Cooling	
	3.2.2. Evaluation Carrier	
	3.3. Functional Specification	
	3.3.1. Technical Data	
	3.3.2. Block Diagram	
	3.3.3. Top Side	
	3.3.4. Bottom Side	
	3.3.5. Processor (CPU)	
	3.3.6. System Memory	
	3.3.7. High-Speed Interface Overview	
	3.4.1 PCIo	
	3.4.1. PCIe	
	3.4.3. SATA	
	3.4.4. Ethernet	
	3.4.5. Graphics Interface	
	3.4.6. Audio Interface	
	3.4.7. UART	
	3.4.8. General Purpose SPI Interface	
	3.4.9. Boot SPI Interface	
	3.4.10. eSPI	
	3.4.11. I2C and IPMB	
	3.4.12. GPIO	
	3.4.13. SMBus	
	3.5. Features	-
	3.5.1. ACPI Power States	
	3.5.2. Embedded Controller - Hardware Monitor	
	3.5.3. Trusted Platform Module	
	3.5.4. Watchdog	
	3.5.5. Real-Time Clock (RTC)	
		. 55

	3.5.6. NVME	
	3.5.7. Boot EEPROM	
	3.5.8. Embedded EEPROM	
	3.5.9. Features on Request	
	3.6. Electrical Specification	
	3.6.1. Power Supply Specification	
	3.6.2. Power Management	
	3.7. Thermal Management	
	3.7.1. Heatspreader Plate Assembly	
	3.7.2. Active/Passive Cooling Solutions	
	3.7.3. Operating with Kontron Heatspreader Plate (HSP) Assembly	
	3.7.4. Operating without Kontron Heatspreader Plate (HSP) Assembly	
	3.7.5. Temperature Sensors	
	3.7.6. On-Module Fan Connector	
	3.8. Mechanical Specification	
	3.8.1. Module Dimensions	39
	3.8.2. Module Height	39
	3.8.3. Heatspreader Plate Assembly Dimension	
	3.9. Environmental Specification	40
	3.10. Compliance	40
	3.11. MTBF	41
4/	COM-HPC Interface Connector	42
	4.1. Connecting COM-HPC Interface Connector to Carrier Board	
	4.2. J1 and J2 Signals	42
	4.3. Connector J1 - Primary	43
	4.3.1. Pins A1 - A100 / B1 - B100	43
	4.3.2. Pins C1 - C100 / D1 - D100	45
	4.4. Connector J2 - Secondary	46
	4.4.1. Pins E1 - E100 / F1 - F100	47
	4.4.2. Pins G1 - G100 / H1 - H100	48
5/	UEFI BIOS	51
	5.1. Starting the UEFI BIOS	51
	5.2. Navigating the UEFI BIOS	51
	5.3. Setup Menus	51
	5.4. Getting Help	52
	5.5. UEFI Shell	
	5.5.1. Entering the UEFI Shell	52
	5.5.2. Exiting the UEFI Shell	
	5.6. UEFI Shell Scripting	53
	5.6.1. Startup Scripting	53
	5.6.2. Create a Startup Script	53
	5.6.3. Example of Startup Scripts	53
	5.7. Firmware Update	
6/	Technical Support	
	6.1. Warranty	
	6.2. Returning Defective Merchandise	
7/	Storage and Transportation	
	7.1. Storage	
	7.2 Transportation	

List of Tables

Table 1: COM-HPC® Product Naming Clarification	
Table 2: COM-HPC® Server and COMh-sdIL (E2) functionality	17
Table 3: Product Number for Industrial Grade Modules (-40°C to +85°C)	18
Table 4: Cooling Equipment for COMh-sdIL (E2) available from Kontron	18
Table 5: Evaluation Carrier	18
Table 6: Technical Data	19
Table 7: Intel® Processor D-1700 / D-1800 Product Family Specifications	22
Table 8: DTR Table	23
Table 9: HSIO Mapping	24
Table 10: PCH HSIO Usage	25
Table 11: CPU PCIe Lanes	25
Table 12: USB 3.0 Support and HSIO	26
Table 13: SATA Port Connections	26
Table 14: D-1700/D-1800 Ethernet MAC Configurations	27
Table 15: Mapping of COM-HPC Server specification to CEI interface	
Table 16: Supported Ethernet Configurations	29
Table 17: UART interfaces on COMh-sdIL (E2)	30
Table 18: GP-SPI on COMh-sdIL (E2)	30
Table 19: BIOS Boot options on the COMh-sdIL (E2)	30
Table 20: eSPI interface on the COMh-sdIL (E2)	31
Table 21: I2C and IPMB interfaces on the COMh-sdIL (E2)	31
Table 22: I2CO addresses	31
Table 23: SMBus interface on the COMh-sdIL (E2)	32
Table 24: Reserved onboard SMBus addresses	32
Table 25: ACPI Power States Function	32
Table 26: Watchdog signal on COM-HPC connector	
Table 27: Features on Request	34
Table 28: Power Supply Control Signals	36
Table 29: Heatspreader Temperature Specification	
Table 30: Fan Connector (3-Pin) Pin Assignment	
Table 31: Environmental Specification	
Table 32: Compliance CE Mark	
Table 33: Country Compliance	41
Table 34: MTBF	41
Table 35: J1 and J2 Pin Types	
Table 36: J1 and J2 Buffer Types	
Table 37: J1 and J2 Other Notation	
Table 38: Connector J1 Pins A1 - A100 / B1 - B100	
Table 39: Connector J1 Pins C1 - C100 / D1 - D100	
Table 40: Connector J2 Pins E1 - E100 / F1 - F100	
Table 41: Connector J1 Pins G1 - G100 / H1 - H100	
Table 12: Navigation Hot Keys Available in the Legend Bar	51

List of Figures

Figure 1: COMh-sdIL (E2) Block Diagram	20
Figure 2: COMh-sdIL (E2) Front Side	21
Figure 3: COMh-sdIL (E2) Bottom Side	21
Figure 4: CEI Interface	28
Figure 5: Module Temperature Sensor	38
Figure 6: Module Dimensions	39
Figure 7: Module and Carrier Height with 5 and 10mm connector height	40
Figure 8: COM-HPC Interface Connectors	42
Figure 9: Setup Menu Selection Bar	52

www.kontron.com

1/General Safety Instructions

Please read this passage carefully and take careful note of the instructions, which have been compiled for your safety and to ensure to apply in accordance with intended regulations. If the following general safety instructions are not observed, it could lead to injuries to the operator and/or damage of the product; in cases of non-observance of the instructions Kontron Europe is exempt from accident liability, this also applies during the warranty period.

The product has been built and tested according to the basic safety requirements for low voltage (LVD) applications and has left the manufacturer in safety-related, flawless condition. To maintain this condition and to also ensure safe operation, the operator must not only observe the correct operating conditions for the product but also the following general safety instructions:

- > The product must be used as specified in the product documentation, in which the instructions for safety for the product and for the operator are described. These contain guidelines for setting up, installation and assembly, maintenance, transport or storage.
- > The on-site electrical installation must meet the requirements of the country's specific local regulations.
- If a power cable comes with the product, only this cable should be used. Do not use an extension cable to connect the product.
- > To guarantee that sufficient air circulation is available to cool the product, please ensure that the ventilation openings are not covered or blocked. If a filter mat is provided, this should be cleaned regularly. Do not place the product close to heat sources or damp places. Make sure the product is well ventilated.
- Only connect the product to an external power supply providing the voltage type (AC or DC) and the input power (max. current) specified on the Kontron Product Label and meeting the requirements of the Limited Power Source (LPS) and Power Source (PS2) of UL/IEC 62368-1.
- Only products or parts that meet the requirements for Power Source (PS1) of UL/IEC 62368-1 may be connected to the product's available interfaces (I/O).
- > Before opening the product, make sure that the product is disconnected from the mains.
- > Switching off the product by its power button does not disconnect it from the mains. Complete disconnection is only possible if the power cable is removed from the wall plug or from the product. Ensure that there is free and easy access to enable disconnection.
- The product may only be opened for the insertion or removal of add-on cards (depending on the configuration of the product). This may only be carried out by qualified operators.
- > If extensions are being carried out, the following must be observed:
-) all effective legal regulations and all technical data are adhered to
- > the power consumption of any add-on card does not exceed the specified limitations
- > the current consumption of the product does not exceed the value stated on the product label
- Only original accessories that have been approved by Kontron Europe can be used.
- Please note: safe operation is no longer possible when any of the following applies:
- > the product has visible damages or
- the product is no longer functioning In this case the product must be switched off and it must be ensured that the product can no longer be operated.
- > Handling and operation of the product is permitted only for trained personnel within a work place that is access controlled.
- > CAUTION: Risk of explosion if the lithium battery is replaced incorrectly (short-circuited, reverse-poled, wrong lithium battery type). Dispose of used lithium batteries according to the manufacturer's instructions.
- > This product is not suitable for use in locations where children are likely to be present

Additional Safety Instructions for DC Power Supply Circuits

- > To guarantee safe operation, please observe that:
- > the external DC power supply must meet the criteria for LPS and PS2 (UL/IEC 62368-1)
- no cables or parts without insulation in electrical circuits with dangerous voltage or power should be touched directly or indirectly

// 13 www.kontron.com

- > a reliable functional earth connection is provided
- a suitable, easily accessible disconnecting device is used in the application (e.g. overcurrent protective device), if the product itself is not disconnect able
- a disconnect device, if provided in or as part of the product, shall disconnect both poles simultaneously
- > interconnecting power circuits of different products cause no electrical hazards
- A sufficient dimensioning of the power cable wires must be selected according to the maximum electrical specifications on the product label as stipulated by EN62368-1 or VDE0100 or EN60204 or UL61010-1 regulations.

For the General Safety Instruction in German or French, visit Kontron's product web page> Downloads> Manuals> General Safety Instructions.

1.1. Electrostatic Discharge (ESD)

A sudden discharge of electrostatic electricity can destroy static-sensitive devices or micro-circuitry. Therefore, proper packaging and grounding techniques are necessary precautions to prevent damage. Always take the following precautions:

ESD Sensitive Device!

Keep electrostatic sensitive parts in their containers until they arrive at the ESD-safe workplace. Always be properly grounded when touching a sensitive board, component, or assembly.

For more Information, see the Special Handling and Unpacking Instruction within this user guide and the following Chapter Grounding Methods.

1.2. Grounding Methods

The following measures help to avoid electrostatic damages to the device:

- > Cover workstations with approved antistatic material. Always wear a wrist strap connected to the workplace, as well as properly grounded tools and equipment.
- > Use antistatic mats, heel straps, or air ionizers for more protection.
- Always handle electrostatically sensitive components by their edge or by their casing.
- > Avoid contact with pins, leads, or circuitry.
- > Switch off power and input signals before inserting and removing connectors or connecting test equipment.
- > Keep the work area free of non-conductive materials such as ordinary plastic assembly aids and styrofoam.
- > Use field service tools such as cutters, screwdrivers, and vacuum cleaners that are conductive.
- > Always place drives and boards with the PCB-assembly-side down on the foam.

1.3. Instructions for Lithium Battery

If the product is equipped with a lithium battery, there is a risk of explosion if the lithium battery is replaced incorrectly (short-circuited, reverse-poled, wrong lithium battery type). Dispose of used batteries according to the manufacturer's instructions.

ACAUTION

Risk of Explosion if the lithium battery is replaced by an incorrect Type. Dispose of used batteries according to the instructions.

Risque d'explosion si la pile au lithium est remplacée par une pile de type incorrect. Éliminez les piles au lithium usagées conformément aux instructions

// 14 www.kontron.com

Do not dispose of lithium batteries in general trash collection. Dispose of the lithium battery according to the local regulations dealing with the disposal of these special materials, (e.g. to the collecting points for dispose of batteries).

// 15 www.kontron.com

2/Product Introduction

This user guide describes the COM-HPC® Server Size D small* Computer-On-Module COMh-sdIL made by Kontron and focuses on describing the module's special features. Kontron recommends users to study this user guide before powering on the module.

*small: smaller size 120 x 160 instead of 160 mm x 160 mm, server-pinout and connector placement is aligned to COM-HPC specification for Server Size D

2.1. Product Naming Clarification

Table 1: COM-HPC® Product Naming Clarification

Standard short form	Туре	Module size	Processor family identifier	Available temperature variants
COMh-	m = mini c = client s = server	7 = Size: 95mm x 70mm a = Size A: 95mm x 120mm b = Size B: 120mm x 120mm c = Size C: 160mm x 120mm d = Size D: 160mm x 160mm e = Size E: 200mm x 160mm	ID = IceLake D HCC IL = IceLake D LCC AP = AlderLake P AS = AlderLake S etc.	(none=) Commercial Extended (E1) Industrial (E2) Screened industrial (E2S)

2.2. Product Description

The COMh-sdIL (E2) with scalability from 4 to 10 cores and SKUs for an extended temperature range and 24×7 / 10 years reliability allows very robust implementations for harsh environments and extreme conditions in a small mechanical footprint.

The module accommodates memory down components for a max. of 64GB DDR4 memory at 2933 MT/s. As storage medium, a soldered NVMe SSD onboard with up to 1 TByte (TLC) storage capacity is optionally available. With 32x PCle lanes (16x PCle Gen4 plus 16x PCle Gen3 lanes) and 2x Quad LAN interfaces supporting 40Gb Ethernet, the COMh-sdIL (E2) is an ideal platform for high data throughput requirements in demanding I/O and network structures.

Key features are:

- > Size D small form factor 120 x 160 mm
- Intel Xeon D-1700/D-1800 Server platform
- > Up to 10 cores, processor TDP up to 67W
- > 16x PCle Gen 4.0 lanes + 16x PCle Gen 3.0 lanes
- > 8x LAN Ports for various configurations up to 2x 100GbE (10-core version)
- Memory: Max 64GB DDR4 soldered
- Optional onboard storage NVMe
- Industrial temperature versions
- > Embedded management controller

2.3. COM-HPC® Documentation

The COM-HPC® specification defines the COM-HPC® module form factor, pinout and signals. For more COM-HPC® specification information, please visit the PCI Industrial Computer Manufacturers Group (PICMG®) website.

2.4. COM-HPC® Server Functionality

All Kontron COM-HPC® Server modules are popolated two 400-pin connectors, each has 4 rows called A to D on connector J1 and row E to H on connector J2. The COM-HPC® Server Computer-on-Module features the following maximum amount of interfaces according to the PICMG module pinout type.

// 16 www.kontron.com

Table 2: COM-HPC® Server and COMh-sdIL (E2) functionality

Interface	Server min/max	COMh-sdIL (E2)
PCIe 0:47	8/48	32
PCIe 48:63	0/16	0
PCIe BMC	1/1	1
NBASE-T	1	1 (1/2.5GBASE-T)
ETH_KR	2/8	8 (various configurations)
USB 2.0	4/8	4
USB 3.2 Gen1 or Gen2	0/2	2 (USB 3.2 Gen1)
USB 3.2 Gen2x2	0/2	2 (USB 3.2 Gen1)
USB 4.0	0/2	0
SATA	0/2	2
UART	1/2	2
eSPI	0/1	1
BOOT_SPI	1/1	1
GP_SPI	1/1	1
SMB	1/1	1
I ² C	2/2	2
IPMB	0/1	1
GPIO	12/12	12/12

2.5. COM-HPC® Benefits

COM-HPC® defines a Computer-On-Module (COM), with all the components necessary for a bootable host computer, packaged as a highly integrated computer. All Kontron COM-HPC® modules are very compact and feature a standardized form factor and a standardized connector layout that carry a specified set of signals. Each COM module is based on the COM-HPC® specification. This standardization allows designers to create a single-system carrier board that can accept present and future COM-HPC® modules. The carrier board designer can optimize exactly how each of these functions implements physically. Designers can place connectors precisely where needed for the application, on a carrier board optimally designed to fit a system's packaging. A single carrier board design can use a range of COM-HPC® modules with different sizes and pinouts. This flexibility differentiates products at various price and performance points and provides a built-in upgrade path when designing future-proof systems. The modularity of a COM-HPC® solution also ensures against obsolescence when computer technology evolves. A properly designed COM-HPC® carrier board can work with several successive generations of COM-HPC® modules. A COM-HPC® carrier board design has many advantages of a customized computer-board design and, additionally, delivers better obsolescence protection, heavily reduced engineering effort, and faster time to market.

// 17 www.kontron.com

3/Product Specification

3.1. Module Variants

3.1.1. Industrial Temperature Grade Modules (E2, -40°C to +85°C)

Table 3: Product Number for Industrial Grade Modules (-40°C to +85°C)

Part Number	Product Name	CPU	Memory	Use Condition
HSD04-6400-46-1	COMh-sdIL E2 D-1746TER 64GB	D-1746TER	64GB	Industrial, extended temperature
HSD04-3200-32-1	COMh-sdIL E2 D-1732TE 32GB	D-1732TE	32GB	Industrial, extended temperature
HSD04-1600-15-1	COMh-sdIL E2 D-1715TER 16GB	D-1715TER	16GB	Industrial, extended temperature

3.2. Accessories

Accessories are product specific, COM-HPC® specific or general COM accessories. For more information, contact your local Kontron Sales Representative or Kontron Inside Sales.

3.2.1. Cooling

A standard heat spreader solutions can be used, which are available in a threaded and non-threaded (through hole) version.

Table 4: Cooling Equipment for COMh-sdIL (E2) available from Kontron

Kontron PN	Product Name	Description		
HSD04-0000-99-0	COMh-sdIL (E2) Heat spreader threaded	Standard COM-HPC Heat Spreader for COMh-sdIL (E2) threaded		
HSD04-0000-99-1	COMh-sdIL (E2) Heat Spreader through hole	Standard COM-HPC Heat Spreader for COMh-sdIL (E2) through hole		
HSD99-0000-99-0	COMh Size D Active Uni Cooler (w/o HSP)	Universal Active Cooler for Heatspreader Mounting (160 x 100 x 46 mm)		
HSD99-0000-99-1	COMh Size D Passive Uni Cooler (w/o HSP)	Universal Passive Cooler for Heatspreader Mounting (160 x 100 x 46 mm)		

3.2.2. Evaluation Carrier

Table 5: Evaluation Carrier

Kontron PN	Product Name	Description
HST01-0001-10-0	COM-HPC Server Carrier 10mm	COM-HPC Server Carrier with 10mm Connector Height - CEI EPROM for D-1700/D-1800 platform

// 18 www.kontron.com

3.3. Functional Specification

3.3.1. Technical Data

Table 6: Technical Data

Function	Definition
Compliance	COM-HPC®/Server, Size D small
Dimension (H X W)	120 mm x 160 mm
Processors	Intel Xeon® D-1700/1800 Processor Series
Chipset	Integrated in SoC
Main Memory	Memory down for up to 64 GByte DDR4 ECC memory
Ethernet Controller	Intel® 1226-LM/IT Intel® 2x Quad 25GbE LAN integrated in SoC
Ethernet	1x 1/2.5 Gb Ethernet 8x Ethernet ports supporting versatile configurations depending on CPU SKU: 100GbE / 2x 50GbE / 4x 25GbE / 2x 25GbE + 4x 10GbE / 8x 10GbE
Storage	2x SATA 6 Gb/s
Flash On-board	NVMe SSD (on request) - up to 1 TByte TLC or 333 GByte pSLC
PCI Express	16x PCle Gen4 (1 x16, 2 x8, 4 x4) 16x PCle Gen3 (2 x8, 4 x4, 8 x2)
USB	4x USB 3.0 / USB 2.0
Serial	2x serial interface (RX/TX/CTS/RTS)
Other Features	SPI, SMB, Fast I ² C, Staged Watchdog, RTC
Special Features	Trusted Platform Module (TPM) 2.0
Features on Request	NVMe SSD
Power Management	ACPI 6.0
Power Supply	12 V ATX and/or Single Supply Power
BIOS	AMI UEFI
Operating Systems	Linux, Windows 10 IoT Enterprise, Windows Server 2022
Temperature	Commercial temperature: 0 °C to +60 °C operating, -30 °C to +85 °C non-operating Industrial temperature: -40 °C to +80 °C operating, -30 °C to +85 °C non-operating
Humidity	93 % relative Humidity at 40 °C, non-condensing (according to IEC 60068-2-78)

// 19 www.kontron.com

3.3.2. Block Diagram

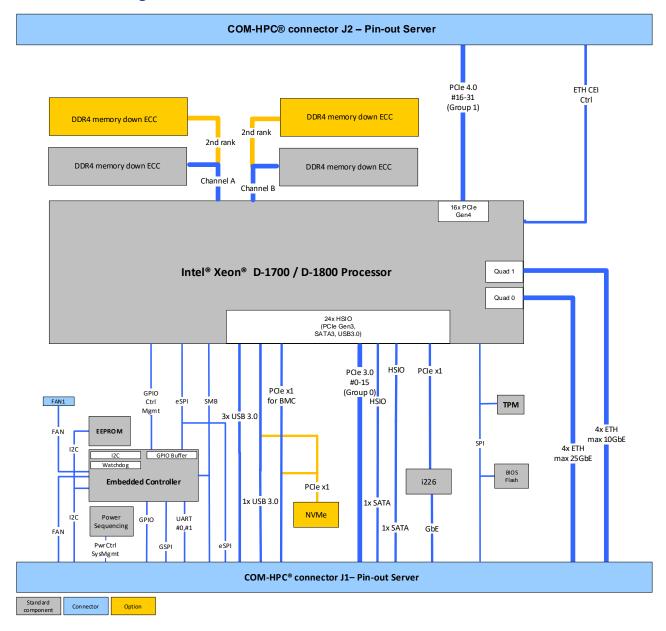


Figure 1: COMh-sdIL (E2) Block Diagram

// 20 www.kontron.com

3.3.3. Top Side

Figure 2: COMh-sdIL (E2) Front Side

- 1. Programming connector for embedded controller
- 2. Processor
- 3. Optional NVMe

- 4. Fan Connector
- 5. Memory down
- 6. XDP debug port (not populated on production units)

3.3.4. Bottom Side

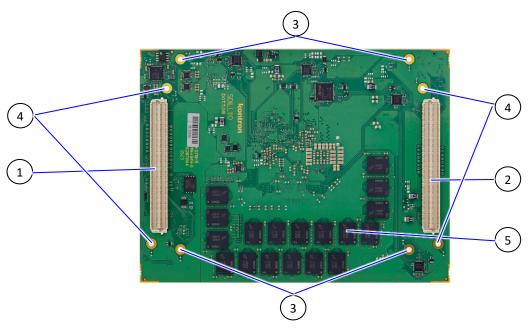


Figure 3: COMh-sdIL (E2) Bottom Side

- 1. COM-HPC connector J1
- 2. COM-HPC connector J2
- 3. Four mounting holes for heatspreader mounting to module backplate (Kontron specific)
- 4. Four mounting holes for heatspreader to module, module to carrier mounting
- 5. Soldered memory populated for 64GB memory capacity

// 21 www.kontron.com

3.3.5. Processor (CPU)

The Intel® Xeon® processor D-1700 processor family with 45 mm x 45 mm package size (FCBGA) is the next generation System-on-Chip (SoC) with processor cores built using Intel 10-nanometer process technology. The three major complexes in this highly-integrated SoC are the CPU, PCH and NAC. The Central Processing Unit (CPU) complex contains up to 10 next-generation 64-bit processor cores.

The Platform Controller Hub (PCH) of the SoC is architected with a rich set of interconnect technologies.

The Network Accelerator Complex (NAC) includes technologies for security and packet processing.

The SoC architecture is highly scalable and efficient, providing a unified solution across an array of products. The processor SKUs are targeted for long life supply availability with extended reliability in communications environments.

Table 7: Intel® Processor D-1700 / D-1800 Product Family Specifications

Intel SKU	For COMh-sdIL	Group	TDP (W)	No. of Cores	IOTG	Ext Tmp (^C)	Tj min (°C)	DDR Freq (MHz)	CPU Base Freq (GHz)	All/Max Turbo (GHz)	BW (GbE)	QAT (GbE)
D-1746TER	standard	NIC	67/56	10	Yes	Yes	-40	2667	2.0	2.5/3.1	100G	OFF
D-1848TER	on request	NIC	57	10	Yes	Yes	-40	2667	2,0	2.5/3.1	100G	OFF
D-1749NT	on request	QAT	90	10	No	No	0	2667	3.0	3.5/3.5	100G	20G
D-1748TE	on request	NIC	65	10	No	Yes	-40	2400	2.3	2.8/3.4	50G	OFF
D-1747NTE	on request	QAT	80	10	No	Yes	-40	2933	2.5	3.0/3.5	100G	20G
D-1844NT	on request	QAT	55	10	No	No	0	2667	2,0	2.6/3.1	50G	20G
D-1735TR	on request	NIC	59	8	Yes	No	0	2933	2.2	2.7/3.4	50G	OFF
D-1732TE	standard	NIC	52	8	Yes	Yes	-40	2667	1.9	2.4/3.0	50G	OFF
D-1734NT	on request	QAT	50	8	No	No	0	2667	2.0	2.5/3.1	50G	20G
D-1736NT	on request	QAT	67	8	No	No	0	2667	2.7	3.2/3.5	50G	20G
D-1733NT	on request	QAT	53	8	No	No	0	2400	2.0	2.5/3.1	50G	20G
D-1823NT	on request	QAT	55	6	No	No	0	2400	2.8	3.3/3.5	50G	10G
D-1715TER	standard	NIC	50	4	Yes	Yes	-40	2667	2.4	2.9/3.5	50G	OFF
D-1712TR	on request	NIC	40	4	Yes	No	0	2400	2.0	2.5/3.1	50G	OFF
D-1718T	on request	NIC	46	4	No	No	0	2933	2.6	3.1/3.5	50G	OFF
D-1713NT	on request	QAT	45	4	No	No	0	2400	2.2	2.9/3.5	50G	10G
D-1713NTE	on request	QAT	45	4	No	Yes	-40	2400	2.2	2.7/3.3	50G	10G
D-1813NT	on request	QAT	42	4	No	No	0	2400	2.2	2.4/2.4	50G	10G
D-1846	on request	Compute	55	10	No	No	0	2933	2.0	2.6/3.1	0G	OFF
D-1739	on request	Compute	83	8	No	No	0	2933	3.0	3.5/3.5	0G	OFF
D-1736	on request	Compute	55	8	No	No	0	2933	2.3	2.8/3.4	0G	OFF
D-1834	on request	Compute	42	8	No	No	0	2667	1.8	2.4/2.9	0G	OFF
D-1726	on request	Compute	70	6	No	No	0	2933	2.9	3.4/3.5	0G	OFF
D-1722NE	on request	Compute	36	6	No	Yes	-40	2400	1.7	2.1/2.7	0G	10G
D-1714	on request	Compute	38	4	No	No	0	2667	2.3	2.8/3.4	0G	OFF
D1702	on request	Compute	25	2	No	No	0	2400	1.6	1.7/1.7	0G	OFF

For this processor family the Dynamic Temperature Range (DTR) behavior applies. DTR is the temperature range the processor can operate in. The temperature range starts with the temperature of the processor (Tj = junction

temperature) at boot time (TBoot) and can transition to a lower and/or higher temperature within the Tj min and Tj max limits.

E.g.: Tj min = -40° , the Tj max = 100° C and the DTR = $+-90^{\circ}$ C

- > TBoot = -40°C: the processor can operate from -40°C up to + 50°C
- > TBoot = -20°C: the processor can operate from -40°C up to + 70°C
- > TBoot = +20°C: the processor can operate from -40°C up to + 100°C

A Tj outside of the DTR range requires a cold reset but is not enforced by the hardware.

The behavior is described in <u>Intel whitepaper 814861</u> as DTR = Dynamic Temperature Range and in Intel document #595914, which is not public.

Please contact Kontron Support for further information.

Table 8: DTR Table

CPU Use Condition	Commercial Temp: Embedded Broad Market/Industrial	Extended Temp: Embedded Broad Market/Industrial	
CPU Tj min.	0°C	-40°C	
CPU Tj max.	105°C	105°C	
DTR (Cold to Hot Transition)	TBoot + 90°C	TBoot + 90°C	
DTR (Hot to Cold Transition)	TBoot - 90°C	TBoot - 90°C	

By default the DTR-range is +-90°C. Within Tjunction limits the max. temperature range during operation can be increased to +-145°C by reducing interface speeds, such as e.g. PCIe Gen4 to PCIe Gen3.

For more details please see Intel document #595914 and/or contact Kontron Support.

3.3.6. System Memory

The COMh-sdIL (E2) supports up to 64 GByte DDR4 ECC memory down.

3.3.7. High-Speed Interface Overview

The integrated SoC PCH supports 24x HSIO lanes #0-23 (HSIO) which can be configured as PCIe Gen 3.0 lanes with up to 3 RPC (Root Port Controller), 4 RP (Root Port) per RPC (12 RPs max). The HSIO PCIe lanes are partly multiplexed with USB3.0 and SATA.

The HSIO lanes #0 - #15 are used as PCIe Gen 3.0 lanes to support COM-HPC J1 Group 0 PCIe #0 -15.

The HSIO lane #16 is used as PCIe Gen 3.0 lane for the onboard 1/2.5 GbE Controller Intel i226.

The HSIO lane #17 and #19 are defined as SATA.

The HSIO lane #18 is used as PCIe Gen 3.0 lane for a BMC controller on the carrier board; as a BOM option the HSIO lane #18 can be defined as 1x PCIe Gen 3.0 lane for an optional onboard NVMe SSD.

The HSIO lanes #20, #21 and #23 are defined as USB3.0.

The HSIO lane #22 is defined as USB 3.0 for USB #3 - as a BOM option the HSIO lane #22 can be defined as 1x PCIe Gen 3.0 lane for for an optional onboard NVMe SSD.

// 23 www.kontron.com

Table 9: HSIO Mapping

HSIO Lane#	PCle Gen 3.0	USB 3.0	SATA	Description
0	PCIe 0	-	-	COM-HPC Connector - Group 0 low - PCle Gen 3
1	PCle 1	-	-	
2	PCIe 2	-	-	
3	PCle 3	-	-	
4	PCIe 4	-	-	
5	PCle 5	-	-	
6	PCIe 6	-	-	
7	PCIe 7	-	-	COM-HPC Connector - Group 0 high - PCIe Gen 3
8	PCIe 8	-	-	
9	PCIe 9	-	-	
10	PCIe 10	-	-	
11	PCle 11	-	-	
12	PCle 12	-	-	
13	PCIe 13	-	-	
14	PCIe 14	-	-	
15	PCIe 15	-	-	
16	PCle	-	-	For onboard GbE controller routed to COM-HPC Connector - NBASE-T
17	-	-	SATA 0	COM-HPC Connector - SATA #0
18	PCle	-	-	For a BMC controller on the carrier Option: for onboard NVMe
19	-	-	SATA 1	COM-HPC Connector - SATA #1
20	-	USB 0	-	COM-HPC Connector - USB #0
21	-	USB 1	-	COM-HPC Connector - USB #1
22	PCIe (option)	USB 3 (default)	-	COM-HPC Connector - USB #3
				Option: for onboard NVMe
23	-	USB 2	-	COM-HPC Connector - USB #2

3.4. Interfaces

3.4.1. PCle

COM-HPC allows for up to 65 PCIe lanes on the Server Module. The PCIe lanes are divided into 5 Groups:

- > Group 0 Low: PCIe lanes 0:7 and also an additional lane for BMC use
- Group 0 High: PCle lanes 8:15
- > Group 1: PCle lanes 16:31
- Group 2: PCIe lanes 32:47
- > Group 3: PCle lanes 48:63

The integrated SoC PCH supports 24x HSIO lanes #0-23 (HSIO) which can be configured as PCIe Gen 3.0 lanes with up to 3 RPC (Root Port Controller), 4 RP (Root Port) per RPC (12 RPs max). The HSIO PCIe lanes are partly multiplexed with USB3.0 and SATA.

Further information see Chapter 3.3.7 High-Speed Interface Overview

// 24 www.kontron.com

Table 10: PCH HSIO Usage

COMh Group	COMh Lane	PCH/HSIO PCIe Lane	Lane Config	Lane Config			
	0	HSIO PCIE 0	x2				
	1	HSIO PCIE 1	XZ				
	2	HSIO PCIE 2	x2	x4			
0 LOW	3	HSIO PCIE 3	XZ		x8	3	
O LOVV	4	HSIO PCIE 4	x2		Αδ		
	5	HSIO PCIE 5	X2	x4			
	6	HSIO PCIE 6	x2	^4			
	7	HSIO PCIE 7	XZ				
	8	HSIO PCIE 8	x2				
	9	HSIO PCIE 9	XZ	x4			
	10	HSIO PCIE 10	x2	^4			
0 HIGH	11	HSIO PCIE 11	X2		x8		
o mon	12	HSIO PCIE 12	x2		٨٥		
	13	HSIO PCIE 13	^2	x4			
	14	HSIO PCIE 14	x2	^+			
	15	HSIO PCIE 15	^2				

In addition the SoC CPU provides 16x PCIe Gen 4.0 lanes

Table 11: CPU PCIe Lanes

COMh Group	COMh Lane	CPU PCIe Lane	Lane Config			PCIe Gen
	16	CPU PCIE 0				
	17	CPU PCIE 1	x4			
	18	CPU PCIE 2	х4			
	19 CPU PCIE 3	x8				
	20	CPU PCIE 4		xo		4
	21	CPU PCIE 5	x4		- x16	
	22	CPU PCIE 6	X4			
1	23	CPU PCIE 7				
1	24	CPU PCIE 8				
	25	CPU PCIE 9	x4			
	26	CPU PCIE 10	х4			
	27	CPU PCIE 11		x8		
	28	CPU PCIE 12		XO		
	29	CPU PCIE 13	x4			
	30	CPU PCIE 14	Λ4			
	31	CPU PCIE 15				

3.4.2. USB

The COM-HPC Server Module supports up to eight USB 2.0 ports, up to two USB 3.2 Gen 1 or Gen 2 ports and up to two USB 3.2 Gen 2×2 ports or USB4 ports. A USB 3.2 Gen 2×2 may be used as a USB 3.2 Gen 1 or Gen 2 port as well.

To realize a COM-HPC USB 3.2 Gen 1, Gen 2×2 or USB4 port, one of the four available USB 2.0 ports from the USB[0:3] pool must be used along with the SuperSpeed pins.

The COMh-sdIL (E2) supports 4x USB 3.0 ports

// 25 www.kontron.com

Table 12: USB 3.0 Support and HSIO

COM-HPC connector	HSIO Lane#	USB Speed	Comment
USB0	20	USB 3.0	USB 3.2 Gen 1×1
USB1	21	USB 3.0	USB 3.2 Gen 1×1
USB2	23	USB 3.0	USB 3.2 Gen 1×1
USB3	22	USB 3.0	USB 3.2 Gen 1×1 build option: configured as PCIe x1 for an optional NVM

3.4.3. SATA

Two SATA links for support of SATA-150 (revision 1.0, 1.5Gb/s), SATA-300 (revision 2.0, 3Gb/s), and SATA-600 (revision 3.0, 6Gb/s) devices are defined, for Server Module.

The COMh-sdIL (E2) supports following SATA interfaces (see also <u>Chapter 3.3.7</u> High-Speed Interface Overview):

Table 13: SATA Port Connections

COM-HPC Connector	HSIO Lane #	Description
SATA0	17	SATA Gen 3, 6 Gb/s
SATA1	19	SATA Gen 3, 6 Gb/s

3.4.4. Ethernet

For a COM-HPC Server module one NBASE-T Ethernet port is defined.

Additionally up to eight Ethernet KR high speed interfaces (max.25G) may on a COM-HPC Server module. For the Ethernet KR ports the Ethernet MACs are located on the COM-HPC Module. PHYs (if used) are on the Carrier.

The COMh-sdIL (E2) supports one 1/2.5GBASE-T port and and up to eight KR interfaces. HSIO lane #16 of the integrated SoC PCH is used as PCIe Gen 3.0 lane for the onboard 1/2.5 GbE Controller Intel i226 (see <u>Chapter 3.3.7</u> High-Speed Interface Overview).

The Intel® Xeon® D-1700/D-1800 processor family supports up to two integrated PHY Quads with 1G/2.5G/10G/25G/40G rates.

// 26 www.kontron.com

Table 14: D-1700/D-1800 Ethernet MAC Configurations

D-1700 D-1800	Ethernet MAC	Quad 0				Quad 1			
		Lane 0	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6	Lane 7
	2x 100G		10 (for 10-core				100G (F	ailover) • CPUs only)	
100G	2x 40G		40)G			40)G	
	2x 25G + 4x 10G	25G	25G			10G	10G	10G	10G
	4x 25G	25G	25G	25G	25G				
	8x 10G	10G	10G	10G	10G	10G	10G	10G	10G
	1x 40G	40G							
	2x 25G	25G		25G					
	4x 10G	10G	10G	10G	10G				
50G	5x 10G	10G	10G	10G	10G	10G		li .	
	4x 10G + 4x 2.5G	10G	10G	10G	10G	2.5G	2.5G	2.5G	2.5G
	4x 10G + 4x 1G	10G	10G	10G	10G	1G	1G	1G	1G

COM-HPC supports both MDIO and I2C control interfaces for the PHYs to be located on the carrier. The MDIO and I2C control interfaces are grouped into quads, for KR ports 0:3 and ports 4:7. With COM-HPC the so-called CEI (Common Electrical Interface) from Intel is introduced for the Ethernet interface. One CEI interface comprises the Ethernet KR signals as well as the sideband and control signals for one quad.

Two CEI interfaces are supported for two quads.

With CEI the Ethernet sideband and control signals are serialized in order to reduce the overall required signals between the module and the carrier.

The carrier is to de-serialize these signals using small, low cost I2C based I/O expanders. Details are presented in the COM-HPC Carrier Board Design Guide.

// 27 www.kontron.com

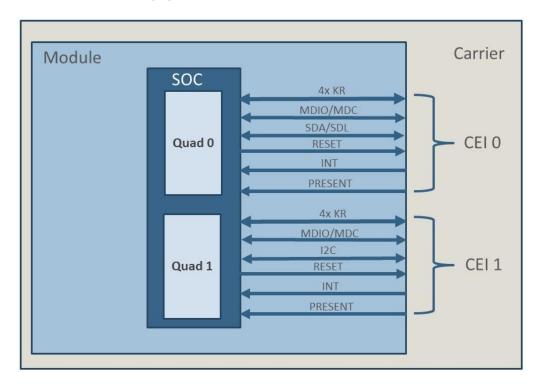


Figure 4: CEI Interface

Table 15: Mapping of COM-HPC Server specification to CEI interface

COM-HPC Signal Name	Pin Type	Intel CEI Mapping	Description
ETH[0:3]_TX+/TX-	0	CEI0_PMD_L[0:3]	Ethernet KR ports, transmit output differential pairs.
ETH[0:3]_RX+/RX-	1	CEI0_PMD_L[0:3]	Ethernet KR ports, receive input differential pairs.
ETH[4:7]_TX+/TX-	0	CEI1_PMD_L[0:3]	Ethernet KR ports, transmit output differential pairs.
ETH[4:7]_RX+/RX-	1	CEI1_PMD_L[0:3]	Ethernet KR ports, receive input differential pairs.
ETH0-3_MDIO_DAT	I/O	CEI0_MDIO	Management Data I/O interface mode data signal for serial data transfers between the MAC and an external PHY for ETHx ports 0 to 3.
ETH0-3_MDIO_CLK	0	CEI0_MDC	Clock signal for Management Data I/O interface mode data signal for serial data transfers between the MAC and an external PHY for ETHx ports 0 to 3.
ETH4-7_MDIO_DAT	1/0	CEI1_MDIO	Management Data I/O interface mode data signal for serial data transfers between the MAC and an external PHY for ETHx ports 4 to 7.
ETH4-7_MDIO_CLK	0	CEI1_MDC	Clock signal for Management Data I/O interface mode data signal for serial data transfers between the MAC and an external PHY for ETHx ports 4 to 7.
ETH0-3_INT#	ı	CEIO_INT#	Active low interrupt signal from IO Port expanders for ETH ports 0 to 3.
ETH4-7_INT#	ı	CEI1_INT#	Active low interrupt signal from IO Port expanders for ETH ports 4 to 7.
ETH0-3_PHY_RST#	0	CEIO_RESET#	Active low output PHY reset signal for ETH ports 0 to 3.
ETH4-7_PHY_RST#	0	CEI1_RESET#	Active low output PHY reset signal for ETH ports 4 to 7.
ETH0-3_I2C_DAT	I/O	CEIO_SDA	I2C data signal of the 2-wire management interface used by the Ethernet KR controller to access the management registers of an external SFP Module or to configure the Carrier PHY for ETHx ports 0 to 3 and for serialized status information (e.g. LED states).
ETH0-3_I2C_CLK	I/O	CEIO_SCL	The I2C clock signals associated with ETH0-3 I2C data lines in the row above.
ETH4-7_I2C_DAT	I/O	CEI1_SDA	I2C data signal of the 2-wire management interface used by the Ethernet KR controller to access the management registers of an external SFP Module or to configure the Carrier PHY for ETHx ports 4 to 7 and for serialized status information (e.g. LED states).
ETH4-7_I2C_CLK	I/O	CEI1_SCL	The I2C clock signals associated with ETH4-7 I2C data lines in the row above.
ETH0-3_PRSNT#	I	CEIO_PRESENT#	Carrier pulls this line to GND if there is Carrier hardware present to support Ethernet KR signaling on ETH0 through ETH3. If the entire KR quad is not supported it should fill from ETH0 on up.
ETH4-7_PRSNT#	I	CEI1_PRESENT#	Carrier pulls this line to GND if there is Carrier hardware present to support Ethernet KR signaling on ETH4 through ETH7. If the entire KR quad is not supported it should fill from ETH4 on up

In general the COMh-sdIL (E2) can support the LAN configurations - enabled by different LEK (LAN Enabling Kit) files - which are aligned with the CEI interface. These are overall described in the following table

// 28 www.kontron.com

Table 16: Supported Ethernet Configurations

Hardware Configuration			CPU	Quad 0			Quad 1					
LEK-CFG	# of Ports	Quad 0 HW Cfg	Quad 1 HW Cfg	D-1700 D-1800	Lane 0	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6	Lane 7
	2	CEL	Disabled	50G	25G		25G					
	4	CEI	Disabled	50G	10G	10G	10G	10G				
7.0	4	CEI	Disabled	100G	25G	25G	25G	25G				
	8	CEI	CEI	50G	10G	10G	10G	10G	1G	1G	1G	1G
	8	CEI	CEI	100G	10G							
	1	Backplane	Disabled	50G		40)G					
	2	Backplane	Disabled	50G	25G		25G					
	2	Backplane	Backplane	100G		40	OG			40	OG	
	4	Backplane	Disabled	50G	10G	10G	10G	10G				
7.6	4	Backplane	Disabled	100G	25G	25G	25G	25G				
	5	Backplane	Backplane	50G	10G	10G	10G	10G	10G			
	6	Backplane	Backplane	100G	25G	25G			10G	10G	10G	10G
	8	Backplane	Backplane	50G	10G	10G	10G	10G	2.5G	2.5G	2.5G	2.5G
	8	Backplane	Backplane	100G	10G							
7.6.3	2	Backplane	Disabled	50G	25G		25G					
7.0.5	4	Backplane	Disabled	100G	25G	25G	25G	25G				

The COMh-sdIL (E2) is preconfigured with LAN-Enabling-Kit LEK-CFG 7.0 supporting 4 ports. For other configurations please contact <u>Kontron Support</u>.

Please get familiar with Intel documents #631178 and #645149.

3.4.5. Graphics Interface

A COM-HPC Server module doesn't support graphic interfaces.

3.4.6. Audio Interface

A COM-HPC Server module doesn't support audio interfaces.

3.4.7. UART

Two 3.3V logic level asynchronous serial ports, designated UART0 and UART1 are defined by COM-HPC. Each port has TX and RX signals for data use and RTS# and CTS# signals for optional handshake / flow control use. For logic level use, the TX and RX signals are active high and the RTS# and CTS# signals are active low. Some data sheets omit the trailing '#' signal but the logic level handshake signals are active low nonetheless. The idle state, or 'mark' state, of the logic level TX line is high, or 3.3V in the COM-HPC case.

These ports may be used directly as logic level asynchronous serial connections between COM-HPC Module and Carrier based devices, or between COM-HPC Module and Carrier based mezzanine devices such as certain Mini-PCIe or M.2 cards. Care has to be taken that the logic I/O levels match up.

The UART interfaces on the COMh-sdIL (E2) are supported by default via the EC (embedded controller). It can be reconnected to the SoC PCH's UARTs on request.

// 29 www.kontron.com

Table 17: UART interfaces on COMh-sdIL (E2)

СОМ-НРС	EC (Default)	SoC PCH (Optional)
UARTO_TX	UARTO_TX	
UARTO_RX	UARTO_RX	option on request
UARTO_RTS#	UARTO_RTS#	option on request
UARTO_CTS#	UARTO_CTS#	
UART1_TX	UART1_TX	
UART1_RX	UART1_RX	antion on request
UART1_RTS#	UART1_RTS#	option on request
UART1_CTS#	UART1_CTS#	

3.4.8. General Purpose SPI Interface

The COM-HPC Server module can support a General Purpose SPI interface (GP_SPI) to connect multiple peripherals.

The COM-HPC GP_SPI interface on the COMh-sdIL (E2) is handled by the EC (embedded controller).

Table 18: GP-SPI on COMh-sdIL (E2)

EC	COM-HPC
EC_GP_SPI_CLK	GP_SPI_CLK
EC_GP_SPI_MOSI	GP_SPI_MOSI
EC_GP_SPI_MISO	GP_SPI_MISO
EC_GP_SPI_CSO#	GP_SPI_CS0#
EC_GP_SPI_CS1#	GP_SPI_CS1#
EC_GP_SPI_CS2#	GP_SPI_CS2#
EC_GP_SPI_CS3#	GP_SPI_CS3#
EC_GP_SPI_ALERT#	GP_SPI_ALERT#

3.4.9. Boot SPI Interface

The Boot SPI interface is used to support loading all or parts of the system BIOS from a Module or Carrier based SPI (Serial Peripheral Interface) flash. The SPI flash device has a capacity of 32 MB (128 Mb).

Alternatively these may be a flash device on the Carrier and / or on the Module, for a combined total of up to 64 Mi

Alternatively there may be a flash device on the Carrier and / or on the Module, for a combined total of up to 64 MB. In most situations, only one flash device, either on the Module or on the Carrier, is used.

An external BIOS ROM can be placed on the carrier and connected via SPI. Boot source is selected by pulling BSEL [2:0] pins low on the COM-HPC carrier (pull-up on module). BSEL is decoded by the EC (embedded controller) which controls a multiplexer IC via SPI_CS_SEL[1:0] to assign the chip selects from the PCH to their designation.

Table 19: BIOS Boot options on the COMh-sdIL (E2)

	BSEL Coding			EC Control Outp	uts	PCH CS Assignment	
Usage	BSEL 2	BSEL 1	BSEL 0	SPI_CS_SEL1	SPI_CS_SEL 0	SPI_CS1#	SPI_CSO#
Internal Boot	1	1	1	1	0	Carrier	Module
External Boot	1	1	0	0	1	Module	Carrier
Do not use	1	0	1	1	0	Carrier	Module
Do not use	1	0	0	1	0	Carrier	Module
Do not use	0	1	1	1	0	Carrier	Module
Do not use	0	1	0	1	0	Carrier	Module
Do not use	0	0	1	1	0	Carrier	Module
Do not use	0	0	0	1	0	Carrier	Module

// 30 www.kontron.com

3.4.10. eSPI

COM-HPC supports an eSPI port for general purpose I/O. The eSPI interface (like LPC before it) can be useful for general purpose devices such as Carrier Super I/O devices, Carrier CPLDs or FPGAs, hardware monitoring devices, and others. It is also possible to boot the BIOS over eSPI. The eSPI bus runs from a 1.8V supply. COM-HPC does not support LPC.

The COMh-sdIL (E2) supports following eSPI interface:

Table 20: eSPI interface on the COMh-sdIL (E2)

SoC (Master)	EC (Slave 0)	COM-HPC Connector (Slave 1)
ESPI_CLK	ESPI_CLK	ESPI_CLK
ESPI_RESET#	ESPI_RESET#	ESPI_RST#
ESPI_IO_[0:3]	ESPI_IO[0:3]	ESPI_IO[0:3]
ESPI_CSO#	ESPI_CS#	-
ESPI_CS1#	-	ESPI_CSO#
ESPI_ALERTO#	ESPI_ALERT#	-
ESPI_ALERT1#	-	ESPI_ALERTO#

ESPI_CS1# and ESPI_ALERT1# on the COM-HPC connector are just terminated but not connected to other platform devices.

3.4.11. I2C and IPMB

Two general purpose I2C ports are defined for COM-HPC. In addition an IPMB interface is defined for platform management functions. The IPMB is used (optionally) with a Carrier based BMC (Board Management Controller) Master. On the Module, the IPMB is routed to and used with a MMC (Module Management Controller). The Module IPMB is a slave port.

On the COMh-sdIL (E2) the I2C and IPMB interfaces are managed by the EC (embedded controller).

Table 21: I2C and IPMB interfaces on the COMh-sdlL (E2)

COM-HPC	EC	Description
I2CO_CLK	I2C02_SCL	General I2C with 3.3V Power Rail
I2CO_DAT	I2C02_SDA	General IZC with 5.5 v Power Kall
I2C1_CLK	I2C03_SCL	General I2C with 1.8V Power Rail
I2C1_DAT	I2C03_SDA	General IZC with 1.8V Power Rail
IPMB_CLK	I2C06_SCL	IPMB (Intelligent Platform Management
IPMB_DAT	I2C06_SDA	Bus)

The following table specifies the devices connected to the accessible I2C0 bus including the I2C address.

Table 22: I2CO addresses

	8-bit Address	7-bit Address	Device
ſ	0xA0	0x50	Module Embedded EEPROM (JIDA EEPROM)
ſ	0xAE	0x57	Carrier EEPROM (optional)

3.4.12. GPIO

The COMh-sdIL (E2) offers 12 GPIO pins on the dedicated pins of COM-HPC®. The type of termination resistor used sets the direction of the GPIO; where GPI terminations are pull-up resistors, and GPO terminations are pull-down resistors.

// 31 www.kontron.com

Due to the fact that both the pull-up and pull-down termination resistors are weak, it is possible to override the termination resistors using external pull-ups, pull-downs or IOs. Overriding the termination resistors means that the 12 GPIO pins can be considered as bi-directional since there are no restrictions whether you use the available GPIO pins in the in-direction or out-direction.

3.4.13. SMBus

The System Management Bus (SMBus) is a simple 2-wire bus for low-speed system management communication with an optional ALERT-signal. The SoC PCH controls the SMBus.

Table 23: SMBus interface on the COMh-sdIL (E2)

COM-HPC	Description	
SMB_CLK		
SMB_DATA	System Management Bus, 3.3V Power Rail	
SMB_ALERT#		

Table 24: Reserved onboard SMBus addresses

8-bit Address	7-bit Address	Device
0xE6	0x73	Onboard embedded controller
0xD4	0x6A	PCIe clock generator

3.5. Features

3.5.1. ACPI Power States

ACPI enables the system to power down, save power when not required (suspend) and wake up when required (resume).

ACPI controls the power states SO-S5, where SO has the highest priority and S5 the lowest priority.

Table 25: ACPI Power States Function

S0	Working state	
S1	Sleep (typically not supported anymore)	
S2	Deep Sleep (typically not supported anymore)	
S3	Suspend-to-RAM	
S4	Suspend-to-disk / Hibernate	
S5	Soft-off state	

Not all ACPI defined power states are available.

The COMh-sdIL (E2) supports ACPI 6.0 and the power states S0, S5 only.

To power on from state S5 use: Power Button

3.5.2. Embedded Controller - Hardware Monitor

The embedded controller (EC) provides a broad set of functionality:

- > monitoring the module's processor temperature, power supply voltages (VCC /5 VSB), battery voltage V_BAT
- monitoring and configuring the on-board and external fans
- acting as hub or super-IO for low speed interfaces such as UART, I2C/SMB, GSPI, GPIO
- supporting watchdog functions

The EC is accessible through the API in the Board Support Package.

3.5.3. Trusted Platform Module

The COMh-sdIL (E2) supports a TPM chip which is directly connected to a dedicated SPI interface from the

// 32 www.kontron.com

SoC PCH.

3.5.4. Watchdog

The COMh-sdIL (E2) supports an independently programmable dual-stage software watchdog timer. The watchdog functionality is accessible through the API of the Embedded Controller (EC) in the related Board Support Package. The watchdog is able to generate IRQ (SWI), SMI and SCI dependent on the implementation.

Please find more information about the watchdog implementation in the according API user guide for the EC implementation.

Time-out event	Description
No action	Stage is off and will be skipped
Reset	Restarts the module and starts a new POST and operating system
NMI	A non-maskable interrupt (NMI) is a computer processor interrupt that cannot be ignored by standard interrupt masking techniques in the system. It is used typically to signal attention for non-recoverable hardware errors.
SMI	A system management interrupt (SMI) makes the processor entering the system management mode (SMM). As such, specific BIOS code handles the interrupt. The current BIOS handler for the watchdog SMI currently does nothing. For special requirements, contact Kontron Support
SCI	A system control interrupt (SCI) is a OS-visible interrupt to be handled by the OS using AML code
Delay	Might be necessary when an operating system must be started and the time for the first trigger pulse must be extended.

The software watchdog functionality can be combined with enabling/disabling the activity of the COM-HPC WD-OUT watchdog signal pin.

Table 26: Watchdog signal on COM-HPC connector

COM-HPC	EC	Description
WD_OUT	GPIO036	Passed through Embedded Controller. Output indicating that a watchdog time-out event has occurred. The watchdog timer interupt (WD_OUT) is a hardware or software timer implemented by the module to the carrier board if there is a fault condition in the main program; the watchdog triggers a system reset or other corrective actions after a specific time, with the aim to bring the system back from a non-responsive to normal state.
WD_STROBE# GPIO035 Passed through Embedded Controller. Strobe input to watchdog timer, may be periodially driven by carrier hardware to keep timing out.		Strobe input to watchdog timer, may be periodially driven by carrier hardware to keep the watchdog from

3.5.5. Real-Time Clock (RTC)

The RTC keeps track of the current time accurately. The RTC's low power consumption enables the RTC to continue operation and keep time using a lower secondary source of power while the primary source of power is switched off or unavailable.

The COMh-sdIL (E2) supports typical RTC values of 3 V and less than 10 μ A. When powered by the main power supply on-module regulators generate the RTC voltage, to reduce RTC current draw. The RTC's battery voltage range is 2.8 V to 3.3 V.

It is not recommended to run a system without a RTC battery on the carrier board. Even if the RTC battery is not required to keep the actual time and date when main power is off, a missing RTC battery will cause other side effects such as longer boot times. Intel processor environments are generally designed to rely on RTC battery voltage.

3.5.6. NVME

As BOM option an NVMe SDD (BGA) can be populated on the COMh-sdIL (E2).

The optional NVMe SSD uses HSIO #18 of the SoC - see also Chapter 3.3.7 High-Speed Interface Overview. The NVMe is based on TLC technology and can be configured as pSLC as well. Configuring the TLC NVMe as pSLC results in dividing the capacity by three.

3.5.7. Boot EEPROM

The SPI interface, which is routed to the COM-HPC connector, supports onboard the serial flash for the BIOS firmware and the TPM chip.

Following Flash Devices are supported by the BIOS:

- MT25QL256ABA1EW9-0SIT
- W25Q256JVEIQ
- MX25L25645GZ2I-08G

3.5.8. Embedded EEPROM

The module's 32 kbit serial EEPROM (formerly known as JIDA EEPROM) device is attached to the I2CO bus from the Embedded Controller and accessible via the 8-bit address 0xAO (see Chapter 3.4.11)

3.5.9. Features on Request

On the COMh-sdIL (E2) following optional features are available on request:

Table 27: Features on Request

Optional Features (on request)	Optional Features (on request)	
NVMe SSD Up to 1 TByte NVMe PCIe SSD NAND Flash TLC technology - configuration as pSLC can be offered		
UART	2 UART serial RX/TX ports from SoC (PCIe based, non-legacy, no RTS/CTS) instead of Embedded Controller	

3.6. Electrical Specification

The module powers on by connecting to a carrier board via the COM-HPC interface connectors. The COM-HPC interface connector pins on the module limit the amount of power received.

Before connecting the module's interface connector to the carrier board's corresponding connector, ensure that the carrier board is switched off and disconnected from the main power supply. Failure to disconnect the main power supply could result in personal injury and damage to the module and/or carrier board.

Observe that only trained personnel aware of the associated dangers connect the module, within an access controlled ESD-safe workplace

3.6.1. Power Supply Specification

The power specification of the module supports a supply voltage of 12 V. Other supported voltages are 5 V standby and 3.3 V RTC battery input.

Table 23: Power Supply Specification

Supply Voltage (VCC)	12 V ± 5%
Standby Voltage (VCC_5V_SBY) 5 V ± 5% - Note: Standby voltage is not mandatory for operation	
RTC Voltage (VCC_RTC) 2.8 V to 3.3 V	

ACAUTION

Only connect to an external power supply delivering the specified input rating and complying with the requirements of Safety Extra Low Voltage (SELV) and Limited Power Source (LPS) of UL/IEC 60950-1 or (PS2) of UL/IEC 62368-1.

To protect external power lines of peripheral devices, make sure that the wires have the right diameter to withstand the maximum available current and the enclosure of the peripheral device fulfils the fire-protection requirements of IEC/EN 62368-1.

// 34 www.kontron.com

If any of the supply voltages drops below the allowed operating level longer than the specified hold-up time, all the supply voltages should be shut down and left OFF for a time long enough to allow the internal board voltages to discharge sufficiently. If the OFF time is not observed, parts of the board or attached peripherals may work incorrectly or even suffer a reduction of MTBF. The minimum OFF time depends on the implemented PSU model and other electrical factors and must be measured individually for each case.

3.6.1.1. Power Supply Voltage Rise Time

The input voltage rise time is 0.1 ms to 20 ms from input voltage ≤10% to nominal input voltage. To comply with the ATX specification there must be a smooth and continuous ramp of each DC input voltage from 10 % to 90 % of the DC input voltage final set point.

3.6.1.2. Power Supply Voltage Ripple

The maximum power supply voltage ripple and noise is 100 mV peak-to-peak measured over a frequency bandwidth of 0 MHz to 20 MHz. The voltage ripple, must not cause the input voltage range to be exceeded.

3.6.1.3. Power Supply Inrush Current

The maximum inrush current at 5 V standby is 2 A. From states G3 (module is mechanically completely off, with no power consumption) or S5 (module appears to be completely off) to state S0 (module is fully usable) the maximum inrush current meets the SFX Design Guide.

3.6.2. Power Management

The Advanced Configuration and Power Interface (ACPI) 6.0 hardware specification supports features such as power button and suspend states. The power management options are available within the BIOS set up menu: Advanced>ACPI Settings>

3.6.2.1. Suspend States

If power is removed, 5V can be applied to the V_5V_SBY pins to support the ACPI suspend-states:

- Suspend to RAM (S3)
- > Suspend to Disk (S4)
- Soft-off (S5)

If power is removed, the wake-up event (S0) requires 12V VCC to power on the module for normal operation.

3.6.2.2. Power Supply Control Signals

Power supply control settings are set in the BIOS and enable the module to shut down, reset and wake from standby.

// 35 www.kontron.com

Table 28: Power Supply Control Signals

COM-HPC Signal	Pin	Description
Power Button (PWRBTN#)	B02	A PWRBTN# falling edge signal creates power button event (50 ms ≤ t < 4 s, typical 400 ms) at low level). Power button events can be used to bring a system out of S5 soft-off and other suspend states, as well as powering the system down. Pressing the power button for at least four seconds turns off power to the module Power Button Override.
Power Good (VIN_PWR_OK)	C06	Indicates that all power supplies to the module are stable within specified ranges. PWR_OK signal goes active and module internal power supplies are enabled. PWR_OK can be driven low to prevent module from powering up until the carrier is ready and releases the signal. PWR_OK should not be deactivated after the module enters SO unless there is a power fail condition.
Reset Button (RSTBTN#)	C02	Reset button input. The RSTBTN# may be level sensitive (active low) or may be triggered by the falling edge of the signal. There are some situations in which it is desirable for a sustained low state of the RSTBTN# to keep the CPU Module unit in a reset condition. This situation comes up with large Carrier or module based FPGAs that need more time to be loaded and configured than the CPU boot time allows. Therefore, COM-HPC Module designs should either keep the CPU Module in a reset state while RSTBTN# is low, or they should pause the boot process in an early state while RSTBTN# is low. This can be done by the Module BIOS monitoring the RSTBTN# line through an I/O port. The BIOS should be paused in an early point, before PCIe and USB enumerations take place. Additionally, the Module PLTRST# signal (below) should not be released (driven or pulled high) while the RSTBTN# is low. For situations when RSTBTN# is not able to reestablish control of the system, VIN_PWR_OK or a power cycle may be used.
Platform Reset (PLTRST#)	A12	Platform Reset: output from Module to Carrier Board. Active low. Issued by Module chipset and may result from a low RSTBTN# input, a low VIN_PWR_OK input, a VCC power input that falls below the minimum specification, a watchdog timeout, or may be initiated by the Module software. PLTRST# should remain asserted (low) while the RSTBTN# is low.
Suspend to RAM (SUS_S3#)	B08	Indicates system is in Suspend to RAM state. Active low output. An inverted copy of SUS_S3# on the Carrier Board should be used to enable the non-standby power on a typical ATX supply. Even in single input supply system implementations (AT mode, no standby input), the SUS_S3# Module output should be used disable any Carrier voltage regulators when SUS_S3# is low, to prevent bleed leakage from Carrier circuits into the Module.
Suspend to Disk (SUS_S4_S5#)	C08	Indicates system is in Suspend to Disk (S4) or Soft Off (S5) state. Active low output.
Suspend Clock (SUS_CLK)	A87	32.768 kHz +/- 100 ppm clock used by Carrier peripherals such as M.2 cards in their low power modes.
PCIe Wake UP (WAKE0#)	D10	PCI Express wake up signal.
GP Wake UP (WAKE1#)	D11	General purpose wake up signal. May be used to implement wake-up on PS2 keyboard or mouse activity.
Battery Low (BATLOW#)	A11	Indicates that external battery is low. This port provides a battery-low signal to the Module for orderly transitioning to power saving or power cut off ACPI modes.
Lid detection (LID#)	B45	LID switch. COM-HPC/Client only: Low active signal used by the ACPI operating system for a LID switch.
Sleep button (SLEEP#)	B46	Sleep button. COM-HPC/Client only: Low active signal used by the ACPI operating system to bring the system to sleep state or to wake it up again.
Tamper Signal (TAMPER#)	B06	Tamper or Intrusion detection line on VCC_RTC power well. Carrier hardware pulls this low on a Tamper event.
No power (AC_PRESENT)	D34	Driven hard low on Carrier if system AC power is not present.
Resume Reset (RSMRST_OUT#)	B86	This is a buffered copy of the internal Module RSMRST# (Resume Reset, active low) signal. The internal Module RSMRST# signal is an input to the chipset or SoC and when it transitions from low to high it indicates that the suspend well power rails are stable. USB devices on the Carrier that are to be active in S5 / S3 / S0 should not have their 5V supply applied before RSMRST_OUT# goes high. RSMRST_OUT# shall be a 3.3V CMOS Module output, active in all power states.

3.7. Thermal Management

3.7.1. Heatspreader Plate Assembly

A heatspreader plate assembly is available from Kontron for the COMh-sdIL (E2).

// 36 www.kontron.com

The heatspreader plate assembly is NOT a heat sink. The heatspreader plate transfers heat as quickly as possible from the processor using a copper core positioned directly above the processor and a Thermal Interface Material (TIM). The heatspreader plate is factory prpared with a TIM screen printed on the contacts and may be fasten to the module without additional user actions.

The heatspreader plate works as a COM-HPC standard thermal interface and must be used with a heat sink or external cooling devices to mainten the heatspreader plate at proper operating temperatures. Under worst-case conditions, the cooling mechanism must maintain an ambient air and heatspreader plate temperature on any spot of the heatspreader's surface according the module's specification:

- > 60°C for commercial temperature grade modules
- > 75°C for extended temperature grade modules (E1)
- > 85°C for industrial temperature grade modules (E2)

3.7.2. Active/Passive Cooling Solutions

Both active and passive thermal management approaches can be used with the heatspreader plate.

The optimum cooling solution depends on the aaplication and environmental conditions. Kontron's active or passive cooling solutions are designed to cover the power and thermal dissipation for a commercial temperature range used in housing with a suitable airflow.

3.7.3. Operating with Kontron Heatspreader Plate (HSP) Assembly

The operating temperature requirements are:

- Maximum ambient temperature with ambient being the air surrounding the module
- > Maximum measurable temperature on any part on the heatspreader's surface

Table 29: Heatspreader Temperature Specification

Temperature Grade	Requirements
Commercial Grade	at 60°C HSP temperature on MCP @100% load; needs to run at nominal frequency
Extended Grade(E1)	at 75°C HSP temperature the MCP @ 75% load; is allowed to start throttling for thermal protection
Industrial Grade (E2)	at 85°C HSP temperature the MCP @ 50% load; is allowed to start throttling for thermal protection

3.7.4. Operating without Kontron Heatspreader Plate (HSP) Assembly

The operating temperature is the maximum measurable temperature on any spot of the module's surface.

3.7.5. Temperature Sensors

The modules's processor is capable of reading its internal temperature. The on-module Hardware Monitor (HWM), located in the embedded controller (EC), uses an on-chip temperature sensor to measure the modules's temperature on the board.

// 37 www.kontron.com



Figure 5: Module Temperature Sensor

3.7.6. On-Module Fan Connector

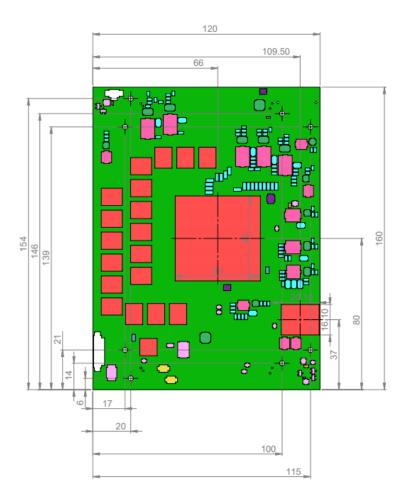
The module's fan connector powers, controls and monitors an external fan. To connect a standard 3-pin connector fan to the module, use Kontron's fan cables:

- **XAB-HSP 200 mm (96079-0000-00-0)**
- **)** KAB-HSP 400 mm (96079-0000-00-2)

Position of the fan connector see Chapter 3.3.3

Table 30: Fan Connector (3-Pin) Pin Assignment

Pin	Signal	Description	Туре
1	Fan_Tach_IN#	Fan input voltage from COMe connector	Input
2	V_FAN	12 V ±10% (max.) across module input range	PWR
3	GND	Power GND	PWR


NOTICE

Always check the fan specification according to the limitations of the supply current and supply voltage.

// 38 www.kontron.com

3.8. Mechanical Specification

3.8.1. Module Dimensions

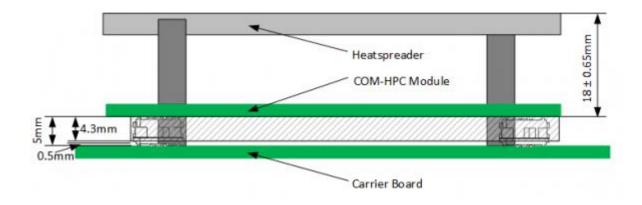


Figure 6: Module Dimensions

3.8.2. Module Height

The COM-HPC/Server specification defines a module height of approximately 18mm, when measured from the bottom of the module's PCB board to the top of the heatspreader. The overall height of the module and carrier board depends on:

- which carrier board connectors are used (5mm and 10mm height are available)
- which cooling solution is used. The height of the cooling solution is not specified in the COM-HPC specification

// 39 www.kontron.com

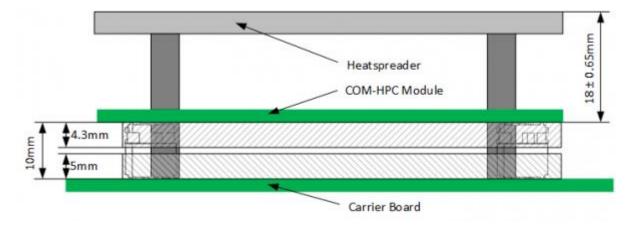


Figure 7: Module and Carrier Height with 5 and 10mm connector height

3.8.3. Heatspreader Plate Assembly Dimension

Please check our **Customer Section** for Heatspreader 3D models and drawings

3.9. Environmental Specification

The COMh-sdIL (E2) supports commercial and industrial temperature grades.

Table 31: Environmental Specification

Environmental		Description	
Commercial Grade	Operating	0°C to +60°C (32°F to 140°F)	
Commercial Grade	Non-operating	-30°C to +85°C (-22°F to 185°F)	
Industrial Crade (F2)	Operating	-40°C to +85°C (-40°F to 167°F)	
Industrial Grade (E2)	Non-operating	-30°C to +85°C (-22°F to 185°F)	
Relative Humidity		93 % @40°C, non-condensing	
Shock (according to IEC / EN 60068-2-27)		Non-operating shock test (half-sinusoidal, 11ms, 15g)	
Vibration (according to IEC / EN 60068-2-6)		Non-operating vibration (sinusoidal, 10 Hz to 2000 Hz, +/- 0.15 mm, 2 g)	

3.10. Compliance

The COMh-sdIL complies with the following or the latest status thereof. If modified, the prerequisites for specific approvals may no longer apply. For more information, contact Kontron Support Europe and Asia or Kontron US.

Table 32: Compliance CE Mark

Europe - CE Mar	Europe - CE Mark			
Directives	2014/30/EU: Electromagnetic Compatibility 2014/35/EU: Low Voltage 2011/65/EU: RoHS II 2001/95/EC: General Product Safety			
EMC	EN 55032 Class B: Electromagnetic compatibility of multimedia equipment - Emission Requirements Class A EN 61000-6-2: Electromagnetic compatibility (EMC) Part 6-2: Generic standards - Immunity standard for industrial environments			
Safety	EN 62368-1: Audio/video, information and communication technology equipment - Part 1: Safety requirements			

// 40 www.kontron.com

Table 33: Country Compliance

USA/Canada				
Safety	UL 62368-1 & CSA C22.2 No. 62368-1 (Component Recognition): Audio/video, information and communication technology equipment - Part 1: Safety requirements Recognized by Underwriters Laboratories Inc. Representative samples of this component have been evaluated by UL and meet applicable UL requirements. UL listings: AZOT2.E147705 AZOT8.E147705			
UK CA Mark	UK CA Mark			
EMC	BS EN 55032 Class B: Electromagnetic compatibility of multimedia equipment - Emission Requirements Class A BS EN 61000-6-2: Electromagnetic compatibility (EMC) Part 6-2: Generic standards - Immunity standard for industrial environments			
Safety	BS EN 62368-1: Audio/video, information and communication technology equipment - Part 1: Safety requirements			
CB scheme (for	international certifications)			
Safety	IEC 62368-1: Audio/video, information and communication technology equipment - Part 1: Safety requirements			

If the product is modified, the prerequisites for specific approvals may no longer apply.

Kontron is not responsible for any radio television interference caused by unauthorized modifications of the delivered product or the substitution or attachment of connecting cables and equipment other than those specified by Kontron. The correction of interference caused by unauthorized modification, substitution or attachment is the user's responsibility.

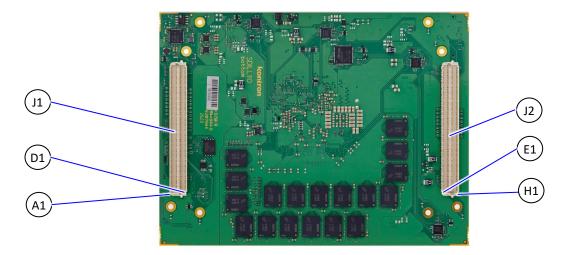
3.11. MTBF

The MTBF (Mean Time Before Failure) values were calculated using a combination of the manufacturer's test data (if available) and the Telcordia (Bellcore) issue 2 calculation for the remaining parts.

The Telcordia calculation used is "Method 1 Case 3" in a ground benign, controlled environment. This particular method takes into account varying temperature and stress data and the system is assumed to have not been burned-in. Other environmental stresses (such as extreme altitude, vibration, saltwater exposure) lower MTBF values.

	MTBF (hours)	Part Number	Description
MTBF Value @40°C	559495	HSD04-6410-48-1	COMh-sdIL E2 D-1848TER 64GB / 1TB

Table 34: MTBF


The MTBF estimated value above assumes no fan, but a passive heat sinking arrangement. Estimated RTC battery life (as opposed to battery failures) is not accounted for and needs to be considered separately. Battery life depends on both temperature and operating conditions. When the module is connected to external power, the only battery drain is from leakage paths.

// 41 www.kontron.com

4/COM-HPC Interface Connector

The COMh-sdIL (E2) is a COM-HPC® Server module populated with two 400-pin connectors J1 and J2; each with 4 rows called rows and all rows are named:

- A to D on the primary connector J1
- > E to H on the secondary connector J2

Figure 8: COM-HPC Interface Connectors

4.1. Connecting COM-HPC Interface Connector to Carrier Board

The COM-HPC interface connectors (J1, J2) are inserted into the corresponding connectors on the carrier board and secured using the mounting points and standoffs. The height of the standoffs depends on the height of the carrier board's connector.

The module is powered on by connecting to the carrier board using the interface connector. Before connecting the module's interface connector to the carrier board's corresponding connector, ensure that the carrier board is switch off and disconnected from the main power supply. Failure to disconnect the main power supply could result in personal injury and damage to the module and/or carrier board. Observe that only trained personnel aware of the associated dangers connect the module, within an access controlled ESD-safe workplace.

To protect external power lines of peripheral devices, make sure that the wires have the right diameter to withstand the maximum available current. The enclosure of the peripheral device fulfills the fire-protection requirements of IEC/EN 62368.

4.2. J1 and J2 Signals

The type of an interface pin consists of the pin type and the buffer type.

// 42 www.kontron.com

Table 35: J1 and J2 Pin Types

Pin Types	Description	
1	Input to the Module	
0	Output from the Module	
1/0	Bi-directional input / output signal	
OD	Open drain output	
REF	Analog reference voltage output – low voltage (GND min, 3.3V max)	

Table 36: J1 and J2 Buffer Types

Buffer Types	Description
CMOS	Logic input or output. Input thresholds and output levels shall be at or over 80% of supply rail for the high side and at or under 20% of the relevant supply rail for the low side.
LOW voltage differential signals – may include DP, TMDS, DP_AUX, MIPI D-PHY and HCSL (High S Steering Logic) used for PCIe clock pairs. Exact details for these variants differ, but the all of these signals are well under 3.3V and the LV serves well to describe them as a group.	
KR	Ethernet 25GBASE-KR or 10GBASE-KR compatible signal.
KX	Ethernet 1000BASE-KX compatible signal.
DP	Display Port compatible signal. Used for DDI interfaces.
MDI	Media Dependent Interface, used for NBASE-T signaling.
NFET	N channel FET output, drain pin, Module can pull low to GND or float.
PCIE	PCI Express compatible differential signals. Includes signaling up to PCIe Gen 5.
PDS	Pull-down strap. Module either pulls these lines to GND or leaves them open.
SATA	SATA compatible differential signals.
USB	USB 2.0 compliant differential signals.
USB_SS	USB Super Speed compliant signals; includes USB 3.0, USB 3.1, USB 3.2 and USB4.

Table 37: J1 and J2 Other Notation

Other Notation	Description
PD	Pull-Down
PU	Pull-Up
2K2	2.2 Kohm resistor (and so on for other values)

4.3. Connector J1 - Primary

4.3.1. Pins A1 - A100 / B1 - B100

Table 38: Connector J1 Pins A1 - A100 / B1 - B100

	Row A		Row B	
Pin	Name	Type / Module Termination	Name	Type / Module
01	VCC	Main Supply Input	VCC	Main Supply Input
02	VCC	Main Supply Input	PWRBTN#	In - 10K PU (3.3V S5)
03	VCC	Main Supply Input	VCC	Main Supply Input
04	VCC	Main Supply Input	THERMTRIP#	Out – Push-pull
05	VCC	Main Supply Input	VCC	Main Supply Input
06	VCC	Main Supply Input	TAMPER#	In – 1M PU (2.5V RTC G3)
07	VCC	Main Supply Input	VCC	Main Supply Input
08	VCC	Main Supply Input	SUS_S3#	Out – 100K PD
09	VCC	Main Supply Input	VCC	Main Supply Input
10	GND	Ground	WD_STROBE#	In - 10K PU (3.3V S0)
11	BATLOW#	In - 10K PU (3.3V S5)	WD_OUT	Out – 10K PD
12	PLTRST#	Out – Push-Pull	GND	Ground
13	GND	Ground	USB5-	Not Connected
14	USB7-	Not Connected	USB5+	Not Connected

// 43 www.kontron.com

	Row A		Row B	
Pin	Name	Type / Module Termination	Name	Type / Module
15	USB7+	Not Connected	GND	Ground
16	GND	Ground	USB4-	Not Connected
17	USB6-	Not Connected	USB4+	Not Connected
18	USB6+	Not Connected	GND	Ground
19	GND	Ground	RSVD	Not Connected
20	ETH4_RX-	SERDES Receive	RSVD	Not Connected
21	ETH4_RX+	SERDES Receive	RSVD	Not Connected
22	GND	Ground	RSVD	Not Connected
23	ETH5_RX-	SERDES Receive	RSVD	Not Connected
24	ETH5_RX+	SERDES Receive	VCC_5V_SBY	Standby Supply Input
25	GND	Ground	USB67_OC#	In – 10K PU (3.3V S5)
26	ETH6_RX-	SERDES Receive	USB45_OC#	In – 10K PU (3.3V S5)
27	ETH6_RX+	SERDES Receive Ground	USB23_OC#	In – 10K PU (3.3V S5) In – 10K PU (3.3V S5)
29	ETH7_RX-	SERDES Receive	USB01_OC#	In – 10K PU (3.3V S5)
30	ETH7_RX+	SERDES Receive	SML1_CLK SML1_DAT	In – 10K PU (3.3V S5)
31	GND	Ground	PMCALERT#	In - 10K PU (3.3V S0)
32	RSVD	Not Connected	SMLO_CLK	In – 10K PU (3.3V S5)
33	RSVD	Not Connected	SMLO_CER SMLO DAT	In – 10K PU (3.3V S5)
34	GND	Ground	USB PD ALERT#	In – 10K PU (3.3V S5)
35	ETH4 TX-	SERDES Transmit	USB_PD_I2C_CLK	Out – 10K PU (3.3V S5)
36	ETH4_TX+	SERDES Transmit	USB_PD_I2C_DAT	Bi – 10K PU (3.3V S5)
37	GND	Ground	USB RT ENA	In – 10K PU (3.3V S0)
38	ETH5_TX-	SERDES Transmit	USB1_LSRX	In – 10K PD
39	ETH5_TX+	SERDES Transmit	USB1_LSTX	In – 10K PD
40	GND	Ground	USB0_LSRX	In – 10K PD
41	ETH6_TX-	SERDES Transmit	USB0_LSTX	In – 10K PD
42	ETH6 TX+	SERDES Transmit	GND	Ground
43	Ground	Ground	USB0 AUX-	Not Connected
44	ETH7_TX-	SERDES Transmit	USB0 AUX+	Not Connected
45	ETH7_TX+	SERDES Transmit	RSVD	Not Connected
46	GND	Ground	RSVD	Not Connected
47	USB1_AUX-	Not Connected	VCC_BOOT_SPI	4K7 PU (3.3V_SPI)
48	USB1_AUX+	Not Connected	BOOT_SPI_CS#	Out – Push-pull
49	GND	Ground	BSELO	10K PU (3.3V S5)
50	eSPI_IO0	Bi – 20K PU (1.8V S5)	BSEL1	10K PU (3.3V S5)
51	eSPI_IO1	Bi – 20K PU (1.8V S5)	BSEL2	10K PU (3.3V S5)
52	eSPI_IO2	Bi – 20K PU (1.8V S5)	eSPI_ALERTO#	In – 20K PU (1.8V S5)
53	eSPI_IO3	Bi – 20K PU (1.8V S5)	eSPI_ALERT1#	In – 20K PU (1.8V S5)
54	eSPI_CLK	Out – 20K PD	eSPI_CS0#	Out – 20K PU (1.8V S5)
55	GND	Ground	eSPI_CS1#	Out – 20K PU (1.8V S5)
56	PCIe_CLKREQ0_LO#	In - 10K PU (3.3V S0)	eSPI_RST#	Out – 20K PU (1.8V S5)
57	PCIe_CLKREQ0_HI#	In - 10K PU (3.3V S0)	GND	Ground
58	GND	Ground	PCIe_BMC_RX-	HSIO Receive
59	PCIe_BMC_TX-	HSIO Transmit	PCIe_BMC_RX+	HSIO Receive
60	PCIe_BMC_TX+	HSIO Transmit	GND	Ground
61	Ground	Ground	PCIe08_RX-	HSIO Receive
62	PCIe08_TX-	HSIO Transmit	PCle08_RX+	HSIO Receive
63	PCIe08_TX+	HSIO Transmit	GND	Ground
64	GND	Ground	PCIe09_RX-	HSIO Receive
65	PCIe09_TX-	HSIO Transmit	PCIe09_RX+	HSIO Receive
66	PCIe09_TX+	HSIO Transmit	GND	Ground
67	GND	Ground	PCIe10_RX-	HSIO Receive
68	PCIe10_TX-	HSIO Transmit	PCIe10_RX+	HSIO Receive
69	PCIe10_TX+	HSIO Transmit	GND	Ground
70	GND	Ground	PCIe11_RX-	HSIO Receive
71 72	PCIe11_TX-	HSIO Transmit	PCle11_RX+	HSIO Receive
	PCle11_TX+	HSIO Transmit	GND DCIo12 BY	Ground HSIO Bassiva
73 74	GND PCIe12 TY-	Ground HSIO Transmit	PCIe12_RX-	HSIO Receive
	PCIe12_TX-	HSIO Transmit	PCIe12_RX+	HSIO Receive
75 76	PCle12_TX+ GND	HSIO Transmit Ground	GND PCIe13 RX-	Ground HSIO Receive
	PCle13 TX-	HSIO Transmit	PCIe13_RX- PCIe13_RX+	HSIO Receive
77 78	PCIe13_TX+	HSIO Transmit	GND	Ground
78 79	GND	Ground	PCIe14 RX-	HSIO Receive
80	PCle14 TX-	HSIO Transmit	PCIe14_RX- PCIe14_RX+	HSIO Receive
81	PCIe14_TX+	HSIO Transmit	GND	Ground
	I CICTA IVA	ווטוט וומווטווווג	עווט ן	Joiouna

// 44 www.kontron.com

	Row A		Row B	
Pin	Name	Type / Module Termination	Name	Type / Module
82	GND	Ground	PCle15_RX-	HSIO Receive
83	PCle15_TX-	HSIO Transmit	PCle15_RX+	HSIO Receive
84	PCle15_TX+	HSIO Transmit	GND	Ground
85	GND	Ground	RSVD	HPC_TEST
86	VCC_RTC	RTC Supply Input	RSMRST_OUT#	Out –10K PD
87	SUS_CLK	Output – 20K PD	UART1_TX	Output – Push-Pull
88	GPIO_00	100K PU (3.3V S5)	UART1_RX	10K PU (3.3V S5)
89	GPIO_01	100K PU (3.3V S5)	UART1_RTS#	Output – Push-Pull
90	GPIO_02	100K PU (3.3V S5)	UART1_CTS#	10K PU (3.3V S5)
91	GPIO_03	100K PU (3.3V S5)	IPMB_CLK	47K PU (3.3V S5)
92	GPIO_04	100K PU (3.3V S5)	IPMB_DAT	47K PU (3.3V S5)
93	GPIO_05	100K PU (3.3V S5)	GP_SPI_MOSI	Output – Push-pull
94	GPIO_06	100K PU (3.3V S5)	GP_SPI_MISO	In – 10K PU (3.3V S0)
95	GPIO_07	100K PU (3.3V S5)	GP_SPI_CS0#	Output – Push-pull
96	GPIO_08	100K PU (3.3V S5)	GP_SPI_CS1#	Output – Push-pull
97	GPIO_09	100K PU (3.3V S5)	GP_SPI_CS2#	Output – Push-pull
98	GPIO_10	100K PU (3.3V S5)	GP_SPI_CS3#	Output – Push-pull
99	GPIO_11	100K PU (3.3V S5)	GP_SPI_CLK	Output – Push-pull
100	TYPE0	Ground	GP_SPI_ALERT#	10K PU (3.3V S0)

4.3.2. Pins C1 - C100 / D1 - D100

Table 39: Connector J1 Pins C1 - C100 / D1 - D100

	Row C		Row D	
Pin	Name	Type / Module Termination	Name	Type / Module
01	VCC	Main Supply Input	VCC	Main Supply Input
02	RSTBTN#	In - 10K PU (3.3V S5)	VCC	Main Supply Input
03	VCC	Main Supply Input	VCC	Main Supply Input
04	CARRIER_HOT#	In - 10K PU (3.3V S0)	VCC	Main Supply Input
05	VCC	Main Supply Input	VCC	Main Supply Input
06	VIN_PWROK	In - 22K PU (3.3V S0/S5)	VCC	Main Supply Input
07	VCC	Main Supply Input	VCC	Main Supply Input
08	SUS_S4_S5#	Out – Push-pull	VCC	Main Supply Input
09	VCC	Main Supply Input	VCC	Main Supply Input
10	GND	Ground	WAKEO#	In – 10K PU (3.3V S5)
11	FAN_PWMOUT	Out – Push-pull	WAKE1#	In – 10K PU (3.3V S5)
12	FAN_TACHIN	In – 10K PU (3.3V S0)	GND	Ground
13	GND	Ground	USB1-	USB2 PHY
14	USB3-	USB2 PHY	USB1+	USB2 PHY
15	USB3+	USB2 PHY	GND	Ground
16	GND	Ground	USB0-	USB2 PHY
17	USB2-	USB2 PHY	USB0+	USB2 PHY
18	USB2+	USB2 PHY	GND	Ground
19	GND	Ground	ETHO_RX-	SERDES Receive
20	ETH0_TX-	SERDES Transmit	ETHO_RX+	SERDES Receive
21	ETH0_TX+	SERDES Transmit	GND	Ground
22	GND	Ground	ETH1_RX-	SERDES Receive
23	ETH1_TX-	SERDES Transmit	ETH1_RX+	SERDES Receive
24	ETH1_TX+	SERDES Transmit	GND	Ground
25	GND	Ground	ETH2_RX-	SERDES Receive
26	ETH2_TX-	SERDES Transmit	ETH2_RX+	SERDES Receive
27	ETH2_TX+	SERDES Transmit	GND	Ground
28	GND	Ground	ETH3_RX-	SERDES Receive
29	ETH3_TX-	SERDES Transmit	ETH3_RX+	SERDES Receive
30	ETH3_TX+	SERDES Transmit	GND	Ground
31	GND	Ground	USB3_SSTX-	HSIO Transmit / 100nF series
32	USB3_SSRX-	HSIO Receive	USB3_SSTX+	HSIO Transmit / 100nF series
33	USB3_SSRX+	HSIO Receive	GND	Ground
34	GND	Ground	USB2_SSTX-	HSIO Transmit / 100nF series
35	USB2_SSRX-	HSIO Receive	USB2_SSTX+	HSIO Transmit / 100nF series
36	USB2_SSRX+	HSIO Receive	GND	Ground
37	GND	Ground	USB1_SSTX0-	HSIO Transmit / 100nF series
38	USB1_SSRX0-	HSIO Receive	USB1_SSTX0+	HSIO Transmit / 100nF series
39	USB1_SSRX0+	HSIO Receive	GND	Ground

// 45 www.kontron.com

	Row C		Row D		
Pin	Name	Type / Module Termination	Name	Type / Module	
40	GND	Ground	USB1 SSTX1-	Not connected	
41	USB1 SSRX1-	HSIO Receive	USB1 SSTX1+	Not connected	
42	USB1_SSRX1+	HSIO Receive	GND	Ground	
43	GND	Ground	USB0_SSTX0-	HSIO Transmit / 100nF series	
44	USB0_SSRX0-	HSIO Receive	USB0_SSTX0+	HSIO Transmit / 100nF series	
45	USB0_SSRX0+	HSIO Receive	GND	Ground	
46	GND	Ground	USB0_SSTX1-	Not connected	
47	USB0_SSRX1-	HSIO Receive	USB0_SSTX1+	Not connected	
48	USB0_SSRX1+	HSIO Receive	GND	Ground	
49	GND	Ground	SATAO_RX-	HSIO Receive	
50	BOOT_SPI_IO0	Bi – 20k PU (V_SPI / 3.3V S5 on SDIL)	SATAO_RX+	HSIO Receive	
51	BOOT_SPI_IO1	Bi – 20k PU (V_SPI / 3.3V S5 on SDIL)	GND	Ground	
52	BOOT_SPI_IO2	Bi – 20k PU (V_SPI / 3.3V S5 on SDIL)	SATAO_TX-	HSIO Transmit / 10nF series	
53	BOOT_SPI_IO3	Bi – 20k PU (V_SPI / 3.3V S5 on SDIL)	SATAO_TX+	HSIO Transmit / 10nF series	
54	BOOT_SPI_CLK	Out – 20k PU (V_SPI / 3.3V S5 on SDIL)	GND	Ground	
55	GND	Ground	SATA1_RX-	HSIO Receive	
56	PCIe_REFCLK0_HI-	PCIE Clock Transmit	SATA1_RX+	HSIO Receive	
57	PCIe_REFCLK0_HI+	PCIE Clock Transmit	GND	Ground	
58	GND	Ground	SATA1_TX-	HSIO Transmit / 10nF series	
59	PCIe_REFCLK0_LO-	PCIE Clock Transmit	SATA1_TX+	HSIO Transmit / 10nF series	
60	PCIe_REFCLK0_LO+	PCIE Clock Transmit	GND	Ground	
61	GND	Ground	PCle00_TX-	HSIO Transmit / 100nF series	
62	PCle00_RX-	HSIO Receive	PCIe00_TX+	HSIO Transmit / 100nF series	
63	PCle00_RX+	HSIO Receive	GND	Ground	
64	GND	Ground	PCIe01_TX-	HSIO Transmit / 100nF series	
65	PCIe01_RX-	HSIO Receive	PCIe01_TX+	HSIO Transmit / 100nF series	
66	PCle01_RX+	HSIO Receive	GND	Ground	
67	GND	Ground	PCIe02_TX-	HSIO Transmit / 100nF series	
68	PCIe02_RX-	HSIO Receive	PCIe02_TX+	HSIO Transmit / 100nF series	
69	PCIe02_RX+	HSIO Receive	GND	Ground	
70	GND	Ground	PCIe03_TX-	HSIO Transmit / 100nF series	
71	PCIe03_RX-	HSIO Receive	PCIe03_TX+	HSIO Transmit / 100nF series	
72	PCIe03_RX+	HSIO Receive	GND	Ground	
73	GND	Ground	PCIe04_TX-	HSIO Transmit / 100nF series	
74	PCIe04_RX-	HSIO Receive	PCIe04_TX+	HSIO Transmit / 100nF series	
75	PCIe04_RX+	HSIO Receive	GND	Ground	
76	GND	Ground	PCIe05_TX-	HSIO Transmit / 100nF series	
77	PCIe05_RX-	HSIO Receive	PCIe05_TX+	HSIO Transmit / 100nF series	
78	PCIe05_RX+	HSIO Receive	GND	Ground	
79	GND	Ground	PCIe06_TX-	HSIO Transmit / 100nF series	
80	PCIe06_RX-	HSIO Receive	PCIe06_TX+	HSIO Transmit / 100nF series	
81	PCIe06_RX+	HSIO Receive	GND	Ground	
82	GND	Ground	PCle07_TX-	HSIO Transmit / 100nF series	
83	PCIe07_RX-	HSIO Receive	PCle07_TX+	HSIO Transmit / 100nF series	
84	PCIe07_RX+	HSIO Receive	GND	Ground	
85	GND	Ground	NBASETO_MDIO-	NBase-T MDI	
86	SMB_CLK	Out – 3K3 PU (3.3V S5)	NBASETO_MDIO+	NBase-T MDI	
87	SMB_DAT	Bi – 3K3 PU (3.3V S5)	GND	Ground	
88	SMB_ALERT#	In – 3K3 PU (3.3V S5)	NBASETO_MDI1-	NBase-T MDI	
89	UARTO_TX	Output – Push-Pull	NBASETO_MDI1+	NBase-T MDI	
90	UARTO_RX	10K PU (3.3V S5)	GND	Ground	
91	UARTO_RTS#	Output – Push-Pull	NBASETO_MDI2-	NBase-T MDI	
92	UARTO_CTS#	10K PU (3.3V S5)	NBASETO_MDI2+	NBase-T MDI	
93	I2CO_CLK	Out – 2K2 PU (3.3V S5)	GND	Ground	
94	I2C0_DAT	Bi – 2K2 PU (3.3V S5)	NBASETO_MDI3-	NBase-T MDI	
95	I2CO_ALERT#	In – 2K2 PU (3.3V S5)	NBASETO_MDI3+	NBase-T MDI	
96	I2C1_CLK	Out – 2K2 PU (1.8V S5)	GND	Ground	
97	I2C1_DAT	Bi – 2K2 PU (1.8V S5)	NBASETO_LINK_MAX#	Out – Push-pull	
98	NBASETO_SDP	Bi – No Termination (3.3V S5)	NBASETO_LINK_MID#	Out – Push-pull	
99	NBASETO_CTREF	1uF to Ground	NBASETO_LINK_ACT#	Out – Push-pull	
100	TYPE1	Ground	TYPE2	Not connected	

4.4. Connector J2 - Secondary

4.4.1. Pins E1 - E100 / F1 - F100

Table 40: Connector J2 Pins E1 - E100 / F1 - F100

	Row E		Row F	Row F	
Pin	Name	Type / Module Termination	Name	Type / Module Termination	
1	RAPID_SHUTDOWN	In – 100K PD	ETH2_SDP	Bi – 20K PU (3.3V S5) after RSMRST	
2	GND	Ground	ETH3_SDP	Bi – 20K PU (3.3V S5) after RSMRST	
3	RSVD	Not connected	ETH4_SDP	Not connected	
4	RSVD	Not connected	ETH5_SDP	Not connected	
5	GND	Ground	ETH6_SDP	Not connected	
6	RSVD	Not connected	ETH7_SDP	Not connected	
7	RSVD	Not connected	ETH4-7_I2C_CLK	Out – 2K2 PU (3.3V S5)	
8	GND	Ground	ETH4-7_I2C_DAT	Bi – 2K2 PU (3.3V S5)	
9	RSVD	Not connected	ETH4-7_INT#	In – 2K2 PU (3.3V S5)	
10	RSVD	Not connected	ETH4-7_MDIO_CLK	Out – 2K2 PU (3.3V S5) – Shared ETH0-3	
11	GND	Ground	ETH4-7_MDIO_DAT	Bi – 2K2 PU (3.3V S5) – Shared ETH0-3	
12	RSVD	Not connected	ETH4-7_PHY_INT#	In – 2K2 PU (3.3V S5)	
13	RSVD	Not connected	ETH4-7_PHY_RST#	Out – 10k PD	
14	GND	Ground	ETH4-7_PRSNT#	In – 2K2 PU (3.3V S5)	
15	RSVD	Not connected	RSVD	Not connected	
16	RSVD	Not connected	RSVD	Not connected	
17	GND	Ground	RSVD	Not connected	
18	RSVD	Not connected	RSVD	Not connected	
19	RSVD	Not connected	GND	Ground	
20	GND	Ground	PCle32_RX-	Not connected	
21	PCIe32_TX-	Not connected	PCle32_RX+	Not connected	
22	PCle32_TX+	Not connected	GND	Ground	
23	GND	Ground	PCle33_RX-	Not connected	
24	PCle33_TX-	Not connected	PCIe33_RX+	Not connected	
25	PCle33_TX+	Not connected	GND	Ground	
26	GND	Ground	PCIe34_RX-	Not connected	
27	PCle34_TX-	Not connected	PCIe34_RX+	Not connected	
28	PCle34_TX+	Not connected	GND	Ground	
29	GND	Ground	PCIe35_RX-	Not connected	
30	PCle35_TX-	Not connected	PCIe35_RX+	Not connected	
31	PCle35_TX+	Not connected	GND	Ground	
32	GND	Ground	PCle36_RX-	Not connected	
33	PCle36_TX-	Not connected	PCle36_RX+	Not connected	
34	PCle36_TX+	Not connected	GND	Ground	
35	GND	Ground	PCIe37_RX-	Not connected	
36	PCle37_TX-	Not connected	PCle37_RX+	Not connected	
37	PCle37_TX+	Not connected	GND	Ground	
38	GND	Ground	PCIe38_RX-	Not connected	
39	PCle38_TX-	Not connected	PCIe38_RX+	Not connected	
40	PCle38_TX+	Not connected	GND	Ground	
41	GND	Ground	PCIe39_RX-	Not connected	
42	PCIe39_TX-	Not connected	PCle39_RX+	Not connected	
43	PCle39_TX+	Not connected	GND	Ground	
44	GND	Ground	PCle16_RX-	HSIO Receive	
45	PCle16_TX-	HSIO Transmit / 100nF series	PCle16_RX+	HSIO Receive	
46	PCle16_TX+	HSIO Transmit / 100nF series	GND	Ground	
47	GND	Ground	PCle17_RX-	HSIO Receive	
48	PCle17_TX-	HSIO Transmit / 100nF series	PCle17_RX+	HSIO Receive	
49	PCle17_TX+	HSIO Transmit / 100nF series	GND	Ground	
50	GND	Ground	PCle18_RX-	HSIO Receive	
51	PCIe18_TX-	HSIO Transmit / 100nF series	PCle18_RX+	HSIO Receive	
52	PCle18_TX+	HSIO Transmit / 100nF series	GND	Ground	
53	GND	Ground	PCle19_RX-	HSIO Receive	
54	PCle19_TX-	HSIO Transmit / 100nF series	PCle19_RX+	HSIO Receive	
55	PCle19_TX+	HSIO Transmit / 100nF series	GND	Ground	
56	GND	Ground	PCle20_RX-	HSIO Receive	
57	PCle20_TX-	HSIO Transmit / 100nF series	PCle20_RX+	HSIO Receive	
58	PCle20_TX+	HSIO Transmit / 100nF series	GND	Ground	
59	GND	Ground	PCle21_RX-	HSIO Receive	
60	PCle21_TX-	HSIO Transmit / 100nF series	PCle21_RX+	HSIO Receive	
		HSIO Transmit / 100nF series	GND		

	Row E		Row F	
Pin	Name	Type / Module Termination	Name	Type / Module Termination
62	GND	Ground	PCle22_RX-	HSIO Receive
63	PCle22_TX-	HSIO Transmit / 100nF series	PCle22_RX+	HSIO Receive
64	PCle22_TX+	HSIO Transmit / 100nF series	GND	Ground
65	GND	Ground	PCle23_RX-	HSIO Receive
66	PCle23_TX-	HSIO Transmit / 100nF series	PCle23_RX+	HSIO Receive
67	PCIe23_TX+	HSIO Transmit / 100nF series	GND	Ground
68	GND	Ground	PCIe48_RX-	Not connected
69	PCIe48_TX-	Not connected	PCle48_RX+	Not connected
70	PCIe48_TX+	Not connected	GND	Ground
71	GND	Ground	PCIe49_RX-	Not connected
72	PCIe49_TX-	Not connected	PCle49_RX+	Not connected
73	PCIe49_TX+	Not connected	GND	Ground
74	GND	Ground	PCIe50_RX-	Not connected
75	PCIe50_TX-	Not connected	PCle50_RX+	Not connected
76	PCle50_TX+	Not connected	GND	Ground
77	GND	Ground	PCle51_RX-	Not connected
78	PCle51_TX-	Not connected	PCle51_RX+	Not connected
79	PCle51_TX+	Not connected	GND	Ground
80	GND	Ground	PCle52_RX-	Not connected
81	PCle52_TX-	Not connected	PCle52_RX+	Not connected
82	PCle52_TX+	Not connected	GND	Ground
83	GND	Ground	PCle53_RX-	Not connected
84	PCle53_TX-	Not connected	PCle53_RX+	Not connected
85	PCle53_TX+	Not connected	GND	Ground
86	GND	Ground	PCle54_RX-	Not connected
87	PCle54_TX-	Not connected	PCle54_RX+	Not connected
88	PCle54_TX+	Not connected	GND	Ground
89	GND	Ground	PCle55_RX-	Not connected
90	PCle55_TX-	Not connected	PCle55_RX+	Not connected
91	PCIe55_TX+	Not connected	GND	Ground
92	GND	Ground	PCIe_REFCLK2-	PCIE Clock Transmit
93	PCIe_REFCLK1-	PCIE Clock Transmit	PCIe_REFCLK2+	PCIE Clock Transmit
94	PCIe_REFCLK1+	PCIE Clock Transmit	GND	Ground
95	GND	Ground	PCIe_CLKREQ3#	In – 10K PU (3.3V S0)
96	PCIe_CLKREQ1#	In – 10K PU (3.3V S0)	ETH0-3_PRSNT#	In – 2K2 PU (3.3V S5)
97	PCIe_CLKREQ2#	In – 10K PU (3.3V S0)	ETH0-3_PHY_RST#	Out – 10k PD
98	PCIe_CLKREQ_OUT	Not connected	ETHO_SDP	Bi – 20K PU (3.3V S5) after RSMRST
99	PCIe_CLKREQ_OUT	Not connected	ETH1_SDP	Bi – 20K PU (3.3V S5) after RSMRST
100	PCIe_PERST_IN0#	Not used – 100K PD	PCIe_PERST_IN1#	Not used – 100K PD

4.4.2. Pins G1 - G100 / H1 - H100

Table 41: Connector J1 Pins G1 - G100 / H1 - H100

	Row G		Row H	
Pin #	Name	Type / Module Termination	Name	Module Termination
1	VCC_5V_SBY	Standby Supply Input	RSVD	Not connected
2	RSVD	Not connected	RSVD	Not connected
3	RSVD	Not connected	RSVD	Not connected
4	RSVD	Not connected	RSVD	Not connected
5	RSVD	Not connected	RSVD	Not connected
6	RSVD	Not connected	RSVD	Not connected
7	RSVD	Not connected	RSVD	Not connected
8	RSVD	Not connected	RSVD	Not connected
9	RSVD	Not connected	RSVD	Not connected
10	RSVD	Not connected	RSVD	Not connected
11	RSVD	Not connected	RSVD	Not connected
12	RSVD	Not connected	RSVD	Not connected
13	RSVD	Not connected	RSVD	Not connected
14	GND	Ground	RSVD	Not connected
15	RSVD	Not connected	RSVD	Not connected
16	RSVD	Not connected	RSVD	Not connected
17	RSVD	Not connected	RSVD	Not connected

// 48 www.kontron.com

	Row G		Row H	
Pin	Name	Type / Module Termination	Name	Module Termination
#		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
18	RSVD	Not connected	RSVD	Not connected
19	RSVD	Not connected	GND	Ground
20	GND	Ground	PCIe40_TX-	Not connected
21	PCIe40_RX-	Not connected	PCle40_TX+	Not connected
22	PCIe40_RX+	Not connected	GND	Ground
23	GND	Ground	PCIe41_TX-	Not connected
24	PCIe41_RX-	Not connected	PCIe41_TX+	Not connected
26	PCIe41_RX+	Not connected Ground	GND PCIe42 TX-	Ground Not connected
27	PCIe42 RX-	Not connected	PCle42_TX+	Not connected
28	PCIe42_RX+	Not connected	GND	Ground
29	GND	Ground	PCIe43_TX-	Not connected
30	PCle43_RX-	Not connected	PCIe43_TX+	Not connected
31	PCIe43_RX+	Not connected	GND	Ground
32	GND	Ground	PCle44_TX-	Not connected
33	PCIe44_RX-	Not connected	PCle44_TX+	Not connected
34	PCIe44_RX+	Not connected	GND	Ground
35	GND	Ground	PCIe45_TX-	Not connected
36	PCIe45_RX-	Not connected	PCle45_TX+	Not connected
37	PCIe45_RX+	Not connected	GND	Ground
38	GND	Ground	PCIe46_TX-	Not connected
39	PCIe46_RX-	Not connected	PCIe46_TX+	Not connected
40	PCle46_RX+	Not connected Ground	GND DCIo47, TV	Ground Not connected
42	PCIe47_RX-	Not connected	PCIe47_TX- PCIe47_TX+	Not connected
43	PCIe47_RX+	Not connected	GND	Ground
44	GND	Ground	PCIe24_TX-	HSIO Transmit / 100nF series
45	PCIe24 RX-	HSIO Receive	PCle24_TX+	HSIO Transmit / 100nF series
46	PCle24_RX+	HSIO Receive	GND	Ground
47	GND	Ground	PCle25_TX-	HSIO Transmit / 100nF series
48	PCle25_RX-	HSIO Receive	PCle25_TX+	HSIO Transmit / 100nF series
49	PCle25_RX+	HSIO Receive	GND	Ground
50	GND	Ground	PCle26_TX-	HSIO Transmit / 100nF series
51	PCIe26_RX-	HSIO Receive	PCIe26_TX+	HSIO Transmit / 100nF series
52	PCIe26_RX+	HSIO Receive	GND	Ground
53	GND	Ground	PCIe27_TX-	HSIO Transmit / 100nF series
54	PCIe27_RX-	HSIO Receive	PCIe27_TX+	HSIO Transmit / 100nF series
55 56	PCIe27_RX+ GND	HSIO Receive Ground	GND PCIe28 TX-	Ground HSIO Transmit / 100nF series
57	PCIe28_RX-	HSIO Receive	PCIe28_TX+	HSIO Transmit / 100nF series
58	PCIe28 RX+	HSIO Receive	GND	Ground
59	GND	Ground	PCle29_TX-	HSIO Transmit / 100nF series
60	PCIe29_RX-	HSIO Receive	PCIe29_TX+	HSIO Transmit / 100nF series
61	PCIe29_RX+	HSIO Receive	GND	Ground
62	GND	Ground	PCle30_TX-	HSIO Transmit / 100nF series
63	PCle30_RX-	HSIO Receive	PCIe30_TX+	HSIO Transmit / 100nF series
64	PCIe30_RX+	HSIO Receive	GND	Ground
65	GND	Ground	PCle31_TX-	HSIO Transmit / 100nF series
66	PCle31_RX-	HSIO Receive	PCle31_TX+	HSIO Transmit / 100nF series
67	PCle31_RX+	HSIO Receive	GND	Ground
68	GND	Ground	PCIe56_TX-	Not connected
69 70	PCIe56_RX-	Not connected	PCIe56_TX+	Not connected Ground
70	PCIe56_RX+ GND	Not connected Ground	PCIe57 TX-	Ground Not connected
72	PCIe57_RX-	Not connected	PCle57_TX+	Not connected
73	PCIe57_RX+	Not connected	GND	Ground
74	GND	Ground	PCIe58_TX-	Not connected
75	PCIe58_RX-	Not connected	PCle58_TX+	Not connected
76	PCle58_RX+	Not connected	GND	Ground
77	GND	Ground	PCle59_TX-	Not connected
78	PCle59_RX-	Not connected	PCIe59_TX+	Not connected
79	PCIe59_RX+	Not connected	GND	Ground
80	GND	Ground	PCle60_TX-	Not connected
81	PCIe60_RX-	Not connected	PCIe60_TX+	Not connected

	Row G		Row H	
Pin #	Name	Type / Module Termination	Name	Module Termination
82	PCle60_RX+	Not connected	GND	Ground
83	GND	Ground	PCle61_TX-	Not connected
84	PCle61_RX-	Not connected	PCle61_TX+	Not connected
85	PCle61_RX+	Not connected	GND	Ground
86	GND	Ground	PCle62_TX-	Not connected
87	PCle62_RX-	Not connected	PCle62_TX+	Not connected
88	PCle62_RX+	Not connected	GND	Ground
89	GND	Ground	PCle63_TX-	Not connected
90	PCle63_RX-	Not connected	PCle63_TX+	Not connected
91	PCle63_RX+	Not connected	GND	Ground
92	GND	Ground	PCIe_REFCLKINO-	Not connected
93	PCIe_REFCLK3-	PCIE Clock Transmit	PCIe_REFCLKIN0+	Not connected
94	PCIe_REFCLK3+	PCIE Clock Transmit	GND	Ground
95	GND	Ground	PCIe_REFCLKIN1-	Not connected
96	ETH0-3_I2C_CLK	Out – 2K2 PU (3.3V S5)	PCIe_REFCLKIN1+	Not connected
97	ETH0-3_I2C_DAT	Bi – 2K2 PU (3.3V S5)	GND	Ground
98	ETH0-3_PHY_INT#	In – 2K2 PU (3.3V S5)	ETH0-3_MDIO_CLK	Out – 2K2 PU (3.3V S5) – Shared ETH4-7
99	ETH0-3_INT#	In – 2K2 PU (3.3V S5)	ETH0-3_MDIO_DAT	Bi – 2K2 PU (3.3V S5) – Shared ETH4-7
100	PCIe_WAKE_OUT0#	Not connected	PCIe_WAKE_OUT1#	Not connected

// 50 www.kontron.com

5/UEFI BIOS

5.1. Starting the UEFI BIOS

The COMh-sdIL (E2) uses a Kontron-customized, pre-installed and configured version of AMI Aptio® V BIOS based on the Unified Extensible Firmware Interface (UEFI) specification and the Intel® Platform Innovation Framework for EFI.

The UEFI BIOS provides a variety of new and enhanced functions specifically tailored to the hardware features of the COMh-sdID.

This chapter provides an overview of the BIOS and its setup. A more detailed listing and description of all BIOS setup nodes can be found in the BIOS file package available on our <u>Customer Section</u>. Please register there to get access to BIOS downloads and Product Change Notifications.

The UEFI BIOS comes with a Setup program that provides quick and easy access to the individual function settings for control or modification of the default configuration. The Setup program allows access to various menus resp. submenus that provide the specific functions.

To start the UEFI BIOS Setup program, follow the steps below:

- 1. Power on the board
- 2. Wait until the first characters appear on the screen (POST messages or splash screen)
- 3. Press the key
- 4. If the UEFI BIOS is password-protected, a request for password will appear. Enter either the User Password or the Supervisor Password (see Security Setup Menu), press <RETURN>, and proceed with step 5.
- 5. The Setup menu appears

5.2. Navigating the UEFI BIOS

The COMh-sdIL (E2) UEFI BIOS Setup program uses a hot key navigation system. The hot key legend bar is located at the bottom of the Setup screens. The following table provides a list of navigation hot keys available in the legend bar.

Table 42: Navigation Hot Keys Available in the Legend Bar

Sub-screen	Description
<f1></f1>	<f1> key invokes the General Help window</f1>
<->	<minus> key selects the next lower value within a field</minus>
<+>	<plus> key selects the next higher value within a field</plus>
<f2></f2>	<f2> key loads previous values</f2>
<f3></f3>	<f3> key loads optimized defaults</f3>
<f4></f4>	<f4> key Saves and Exits</f4>
<→> or <←>	<left right=""> arrows selects major Setup menus on menu bar, for example, Main or Advanced</left>
<↑> or <↓>	<up down=""> arrows select fields in the current menu, for example, Setup function or sub-screen</up>
<esc></esc>	<esc> key exits a major Setup menu and enters the Exit Setup menu</esc>
	Pressing the <esc> key in a sub-menu displays the next higher menu level</esc>
<return></return>	<return> key executes a command or selects a submenu</return>

5.3. Setup Menus

The Setup utility features a selection bar at the top of the screen that lists the menus.

// 51 www.kontron.com

Figure 9: Setup Menu Selection Bar

The Setup menus available for the COMh-sdIL (E2) are:

- Main
- Advanced
- PlatformConfiguration
- Socket Configuration
- Security
- Boot
- Save & Exit

The currently active menu and the currently active UEFI BIOS Setup item are highlighted in white. Use the left and right arrow keys to select the Setup menus.

Each Setup menu provides two main frames. The left frame displays all available functions. Configurable functions are displayed in blue. Functions displayed in grey provide information about the status or the operational configuration.

5.4. Getting Help

The right frame displays a Help window providing an explanation of the respective function.

5.5. UEFI Shell

The Kontron UEFI BIOS features a built-in and enhanced version of the UEFI Shell. For a detailed description of the available standard shell scripting, refer to the EFI Shell User Guide. For a detailed description of the available standard shell commands, refer to the EFI Shell Command Manual. Both documents can be downloaded from the EFI and Framework Open Source Community homepage:

http://sourceforge.net/projects/efi-shell/files/documents/

Kontron UEFI BIOS does not provide all shell commands described in the EFI Shell Command Manual.

5.5.1. Entering the UEFI Shell

To enter the UEFI Shell, follow the steps below:

- 1. Power on the board
- 2. Press the <F7> key (instead of) to display a choice of boot devices
- 3. Select 'UEFI: Built-in EFI shell'

UEFI Interactive Shell v2.2

EDK II / Kontron add-on v0.3

UEFI v2.80 (American Megatrands, 0x0005001A)

map: No mapping found.

4. Press the <ESC> key within 5 seconds to skip startup.nsh or any other key to continue

The output produced by the device-mapping table can vary depending on the board's configuration

If the <ESC> key is pressed before the 5 second timeout elapses, the shell prompt is shown:

Shell>

5.5.2. Exiting the UEFI Shell

To exit the UEFI Shell, follow one of the steps below:

- > Use the exit UEFI Shell command to select the boot device, in the Boot menu, that the OS boots from
- > Reset the board using the reset UEFI Shell command

// 52 www.kontron.com

> Press the reset button of the board or power down/up the board

5.6. UEFI Shell Scripting

5.6.1. Startup Scripting

If the <ESC key is not pressed and the timeout has run out then the UEFI Shell automatically tries to execute some startup scripts. It searches for scripts and executes them in the following order:

- 1. Initially searches for Kontron flash-stored startup script.
- 2. If there is no Kontron flash-stored startup script present, then the UEFI-specified **startup.nsh** script is used. This script must be located on the root of any of the attached FAT formatted disk drive.
- 3. If none of the startup scripts are present or the startup script terminates then the default boot order is continued.

5.6.2. Create a Startup Script

Startup scripts can be created using the UEFI Shell built-in editor edit or under any OS with a plain text editor of your choice.

5.6.3. Example of Startup Scripts

Execute Shell Script on other Harddrive

This example (**startup.nsh**) executes the shell script named **bootme.nsh** located in the root of thefirst detected disk drive (**fs0**).

fs0:

bootme.nsh

5.7. Firmware Update

Firmware updates are typically delivered as a ZIP archive. Please find the latest available BIOS-ZIP archive on Kontron's <u>Customer Section</u>. Further information about the firmware update procedure can be found in the included "flash_instruction.txt"-file.

Register to Kontron's <u>Customer Section</u> to get access to BIOS downloads, additional documentation and Product Change Notification service.

// 53 www.kontron.com

6/Technical Support

For technical support contact our Support Department:

E-mail: support@kontron.comPhone: +49-821-4086-888Web: Kontron Support

Make sure you have the following information available when you call:

- Product ID Number (PN),
- > Serial Number (SN) Module's revision
- Operating System and Kernel/Build version
- Software modifications
- Additional connected hardware/full description of hardware set up

The serial number can be found on the Type Label, located on the product's rear panel.

Be ready to explain the nature of your problem to the service technician.

6.1. Warranty

Due to their limited service life, parts that by their nature are subject to a particularly high degree of wear (wearing parts) are excluded from the warranty beyond that provided by law. This applies to the lithium battery, for example.

If there is a protection label on your product, then the warranty is lost if the product is opened.

6.2. Returning Defective Merchandise

All equipment returned to Kontron must have a Return of Material Authorization (RMA) number assigned exclusively by Kontron. Kontron cannot be held responsible for any loss or damage caused to the equipment received without an RMA number. The buyer accepts responsibility for all freight charges for the return of goods to Kontron's designated facility. Kontron will pay the return freight charges back to the buyer's location in the event that the equipment is repaired or replaced within the stipulated warranty period. Follow these steps before returning any product to Kontron.

- 1. Visit the RMA Information website: https://www.kontron.com/en/support/rma-information
- Download the RMA Request sheet for Kontron Europe GmbH and fill out the form. Take care to include a short
 detailed description of the observed problem or failure and to include the product identification Information
 (Name of product, Product number and Serial number). If a delivery includes more than one product, fill out
 the above information in the RMA Request form for each product.
- 3. Send the completed RMA-Request form to the fax or email address given below at Kontron Europe GmbH. Kontron will provide an RMA-Number.

Kontron Europe GmbH

RMA Support

Phone: +49 (0) 821 4086-0 Fax: +49 (0) 821 4086 111 Email: service@kontron.com

4. The goods for repair must be packed properly for shipping, considering shock and ESD protection.

Goods returned to Kontron Europe GmbH in non-proper packaging will be considered as customer caused faults and cannot be accepted as warranty repairs

// 54 www.kontron.com

5. Include the RMA-Number with the shipping paperwork and send the product to the delivery address provided in the RMA form or received from Kontron RMA Support.

// 55 www.kontron.com

7/Storage and Transportation

7.1. Storage

If the product is not in use for an extended period time, disconnect the power plug from the power supply. If it is necessary to store the product then re-pack the product as originally delivered to avoid damage. The storage facility must meet the products environmental storage requirements as stated within this user guide. Kontron recommends keeping the original packaging material for future storage or warranty shipments.

7.2. Transportation

To ship the product use the original packaging, designed to withstand impact and adequately protect the product. When packing or unpacking products always take shock and ESD protection into consideration and use an EOS/ESD safe working area.

// 56 www.kontron.com

About Kontron

Kontron is a global leader in IoT/Embedded Computing Technology (ECT) and offers individual solutions in the areas of Internet of Things (IoT) and Industry 4.0 through a combined portfolio of hardware, software and services. With its standard and customized products based on highly reliable state-of-the-art technologies, Kontron provides secure and innovative applications for a wide variety of industries. As a result, customers benefit from accelerated time-to-market, lower total cost of ownership, extended product lifecycles and the best fully integrated applications.

For more information, please visit: www.kontron.com

Global Headquarters Kontron Europe GmbH

Gutenbergstraße 2 85737 Ismaning, Germany Tel.: +49 8214 4086-0 info@kontron.com

www.kontron.de

